
Unsuccessful Story about Few Shot Malware Family
Classification and Siamese Network to the Rescue

Yude Bai1, Zhenchang Xing2, Xiaohong Li1∗
Zhiyong Feng3, Duoyuan Ma1

1Tianjin Key Laboratory of Advanced Networking (TANK), School of Computer Science and Technology, College of
Intelligence and Computing, Tianjin University, Tianjin, China

2Research School of Computer Science, Australian National University, Data61 CSIRO, Australia
3School of Computer Software, College of Intelligence and Computing, Tianjin University, Tianjin, China

{baiyude,xiaohongli,zyfeng,2018216033}@tju.edu.cn,zhenchang.xing@anu.edu.au

ABSTRACT
To battle the ever-increasing Android malware, malware family clas-
sification, which classifies malware with common features into a
malware family, has been proposed as an effective malware analysis
method. Several machine-learning based approaches have been pro-
posed for the task of malware family classification. Our study shows
thatmalware families suffer from several data imbalance, withmany
families with only a small number of malware applications (referred
to as few shot malware families in this work). Unfortunately, this is-
sue has been overlooked in existing approaches. Although existing
approaches achieve high classification performance at the overall
level and for large malware families, our experiments show that
they suffer from poor performance and generalizability for few shot
malware families, and traditionally downsampling method cannot
solve the problem. To address the challenge in few shot malware
family classification, we propose a novel siamese-network based
learning method, which allows us to train an effective MultiLayer
Perceptron (MLP) network for embedding malware applications
into a real-valued, continuous vector space by contrasting the mal-
ware applications from the same or different families. In the embed-
ding space, the performance of malware family classification can be
significantly improved for all scales of malware families, especially
for few shot malware families, which also leads to the significant
performance improvement at the overall level.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.

KEYWORDS
Malware family classification, Few shot learning, Siamese network

∗Xiaohong Li is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380354

ACM Reference Format:
Yude Bai, Zhenchang Xing, Xiaohong Li, Zhiyong Feng, Duoyuan Ma. 2020.
Unsuccessful Story about Few Shot Malware Family Classification and
Siamese Network to the Rescue. In 42nd International Conference on Software
Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3377811.3380354

1 INTRODUCTION
Android system is the most common target by malware due to
its popularity [McAfee-Labs 2018]. A recent threat report shows
that about 5 millions of new mobile malware is captured from Jan-
2018 to Jan-2019, which is an increase of 31% over the previous
year [Nokia 2019]. As the manual analysis of new malware is time
demanding [Zhang et al. 2013], the malware analysis is increasingly
overwhelmed by the number of newly disclosedmalware. Due to the
polymorphic property of Android malware, many newly disclosed
malware is just polymorphic variants of existing malware [Zhou
and Jiang 2012], [Feng et al. 2014]. As a result, grouping malware
with common behavior into malware families and studying the
signature of themalware families have been proposed as an effective
means of battling the fast growth of new mobile malware [Fan et al.
2018b].

Security analystsmanually create severalmalware family datasets,
such as Android Malware Genome Project (Genome) [Zhou and
Jiang 2012] (referred to as M-1 in this work) that has 1245 mal-
ware applications in 33 families, Drebin Dataset (Drebin) [Arp et al.
2014] (M-2) that has 5416 malware applications in 131 families, and
AMD Project (AMD) [Wei et al. 2017] (M-3) that has 24478 malware
applications in 71 families. The AMD dataset has a variant that
splits some top-level families into sub-families, and this variant (M-
3s) has 24478 malware applications in 134 families. A multi-class
malware-family classifier can be trained using features of malware
applications in these datasets to predict the family label of a new
malware application. A wide range of syntactic features have been
exploited in this classification task, such as Android permissions
[Wang et al. 2014], critical API calls [Deshotels et al. 2014], and
attributes of inter-component communication (ICC) [Avdiienko
et al. 2015].

We represent a malware application as a multi-dimensional one-
hot feature vector, each dimension of which corresponds to the
presence or absence of one syntactic feature in this application.
Based on the literature survey of effective malware-identifying
features [Au et al. 2012; Feng et al. 2016; Wang et al. 2014], we
select 250 syntactic features, including 50 Android permissions,

1560

2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE)

https://doi.org/10.1145/3377811.3380354
https://doi.org/10.1145/3377811.3380354
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3377811.3380354&domain=pdf&date_stamp=2020-10-01

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Y. Bai, X. Li, Z. Xing, Z. Feng, and D. Ma

156 critical API calls and 44 ICCs. We then build malware-family
classifiers on the datasets M-1, M-2, M-3 and M-3s using the normal
model training method (see Section 4.1), by which the classifier is
trained using certain percentage of the labeled data in a dataset and
then tested on the rest data. As shown in Figure 3, a simple k-nearest
neighbor (KNN) search [Roussopoulos et al. 1995] with “max-win”
strategy can achieve the F1-score 0.951 on M-1, 0.825 on M-2, 0.854
on M-3 and 0.806 on M-3s. Training the Support Vector Machine
(SVM) [Hsu and Lin 2002], Decision Tree (DTree) [Safavian and
Landgrebe 1991] or Random Forest (RF) [Breiman 2001] classifiers
can achieve comparable or even better overall performance on these
four datasets.

However, under this glory overall performance, one critical data
characteristic of the malware family datasets has been overlooked.
That is, the malware family datasets have severe data imbalance
across malware families. As shown in Figure 2, except a small
number of large malware families, there is a long tail of medium
and small malware families. Take the M-3 dataset as an example.
The largest family has 7842malware applications, while the smallest
family has only 4malware applications. Themedian family size is 24,
the first quartile is 12 and the third quartile is 171. In this work, we
consider a malware family with more than 100, 10 to 100 (inclusive),
and less than 10 malware applications as a large, medium and small
malware family, respectively. By this family scale definition, the
total numbers of malware applications in large, medium and small
families have comparable distributions in the four malware family
datasets, so that we can investigate the performance on the three
different scales of families across the datasets.

When we look into the prediction performance for different
scales of malware families, the unsatisfactory performance, espe-
cially for small families, emerges from the shadow of the glory
overall performance. Take the M-3 as an example, the F1-score by
the SVM for the large, medium and small families are 0.916, 0.876,
and 0.600 respectively. As the small malware families have the small
numbers of malware applications, their classification errors do not
significantly impact the overall performance. However, such classi-
fication errors do matter frommalware analysis perspective, as they
could lead to ineffective prevention efforts [Fan et al. 2018c; Tang
et al. 2019]. Another critical issue shadowed by the glory overall
performance is the high variance of the model performance across
the 10-fold cross validations (see Figure 5). For the SVM on M-3, 21
medium and small families have the F1-score variance larger than
0.3. In these 21 families, the SVM have the lowest F1-score 0 and
the highest F1-score 1 in different runs. These large performance
variance indicates that the classifiers obtained by the normal model
training method is sensitive to the choice of training data and suffer
from poor generalizability.

The above model performance and generalization issues reveal
the fundamental limitation of the current malware family classi-
fier training methods, especially for the few shot learning in the
medium and small families where only a small number of malware
applications are available for model training. Unfortunately, the se-
vere data imbalance across malware families renders downsampling
and upsampling methods ineffective in improving the prediction
performance on medium and small malware families or improving
the generalization of the classificationmodel [Chawla et al. 2004; He

and Garcia 2008]. Our experiments also confirm this (see Figure 3
and Figure 5).

In this paper, we propose a siamese-network [Bromley et al. 1994;
Zagoruyko and Komodakis 2015] based learning method to address
the performance and generalization issues caused by the severe
data imbalance in malware family datasets. Intuitively, a siamese
network transforms the multi-class classification of a malware ap-
plication into the binary classification of whether two malware
applications come from the same family. A siamese network con-
sists of two identical, weight sharing MultiLayer Perceptron (MLP)
(i.e., feature extractors) [Bertinetto et al. 2016; Koch et al. 2015]
which should learn to embed malware applications into a continu-
ous vector space, in which malware applications in the same family
should be close but those from different families should be apart.
Training the siamese network requires pairs of malware applica-
tions: those from the same family are positive training data, while
those from different families are negative training data. A large
number of positive and negative training pairs can be generated,
even for small malware families. This leads to effective training
of the feature extractor in the few shot learning setting. The MLP-
based feature extractor trained by the siamese network can then
be connected to a multi-class classifier to predict the family label
of unseen malware applications.

We conduct extensive experiments to compare our siamese-
network based learning method and the normal model training
method on the fourmalware family datasets. Our experiment results
show that the classifiers obtained by siamese-network based learn-
ing perform statistically significantly better than those obtained
by normal model training method, even though siamese-network
based learning uses only a small percentage (e.g., 11.20% for M-3)
of all data used in normal model training method. Furthermore,
siamese-network based learning can significantly boost the perfor-
mance of malware family classification for all scales of families. The
smaller the family is, the larger it can boost the performance. As
such, it narrows the performance gap between the large and small
families. Combining downsampling with siamese-network based
learning can improve themodel generalizability, especially for small
families. Finally, our comparative studies confirm that these bene-
fits cannot be obtained through simple downsampling method or
MLP-based feature extractor, without using the siamese-network
based learning method.

Our work makes the following new contributions:

• To the best of our knowledge, our work is the first to sys-
tematically investigate the severe data imbalance issue in
malware families and the impact of this issues on the perfor-
mance and generalizability of malware family classification,
especially in the few shot learning setting.

• We conduct extensive experiments and analysis to show that
neither downsampling method nor MLP-based feature ex-
tractor in the normal model training setting can successfully
address the performance and generalizability issues caused
by the severe data imbalance issue in malware families.

• We innovatively adopt the siamese-network based learning
for the task of malware family classification, and conduct
comparative experiments which confirm the superior perfor-
mance of our siamese-network based learning over normal

1561

Unsuccessful Story about Few Shot Malware Family Classification and Siamese Network to the Rescue ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

model training method, not only at the overall level but also
at all families scales, especially for few shot learning.

2 RELATEDWORK
Android malware classification has two broad types: binary (be-
nign/malware) classification [Allix et al. 2016; Avdiienko et al. 2015;
Pendlebury et al. 2019; Wang et al. 2014] and multi-class malware
family classification [Deshotels et al. 2014; Feng et al. 2014; Garcia
et al. 2018]. Our work focuses on the second type.

Both types of the classification tasks require an effective feature
representation of the applications to be classified. Many simple
syntactic features and complex semantic features (i.e. graph-based
features) have been identified in existing studies [Avdiienko et al.
2015; Deshotels et al. 2014; Feng et al. 2016; Wang et al. 2014]. Wang
et al. [Wang et al. 2014] performs benign/malware classification
based on Android permission. MudFlow [Avdiienko et al. 2015] de-
tect malware behaviors by syntactic features (API, Intent) via data
flow analysis by FlowDroid [Arzt et al. 2014]. DroidLegacy [Desho-
tels et al. 2014] classify piggybacked malware applications into
families by API call graph for malware applications. Astroid [Feng
et al. 2016] constructs a maximally suspicious common subgraph
of inter-component call graph for each malware family, and then
adopts an approximate graph matching algorithm to determine the
family of a malware application. Although semantic features can
be more predictive than syntactic features, they are more expen-
sive to compute and hard to define. In contrast, syntactic features
can be easily extracted from Android applications by the tools like
AudroGudard [Desnos et al. 2011], and thus are widely used for
malware family classification [Avdiienko et al. 2015; Feng et al.
2016; Wang et al. 2014].

In this work, we also adopt syntactic features, including 50 per-
missions, 156 APIs and 44 attributes of inter-component commu-
nication, to represent malware applications. A naive feature rep-
resentation is one-hot vector. Each vector element represents the
presence or absence of a syntactic feature in the applications. In
addition, we also use real-valued, neural feature vectors computed
by the MLP-based network [Collobert and Bengio 2004] from the
naive one-hot feature vectors. Many studies [Gao et al. 2019; Kim
2014; McLaughlin et al. 2017], including those on malware and
vulnerability analysis [Guo et al. 2019; Han et al. 2017; Yuan et al.
2014], show that neural feature extractors can outperform naive
one-hot feature vector, because neural feature extractors can bet-
ter encode the important features and their implicit relationships.
However, our study shows that neural feature extractors computed
by a not-well-trained MLP network may even lead to the perfor-
mance degradation in malware family classification. Our proposed
siamese-network based learning is an effective means of training
the MLP-based feature extractor.

The adoption of siamese network is driven by the severe data
imbalance across malware families. In such imbalanced classifica-
tion tasks, classes with few instances include less information than
other large classes [Wang and Yao 2019]. Siamese network is one of
the effective few shot learning methods, aiming to acquire knowl-
edge from few data instances through contrastive pairs. It was
introduced in early 1990s for a few shot image matching problem
[Bromley et al. 1994]. Since then, it has been adopted in many few

Figure 1: The task of malware family classification.

shot computer vision tasks [Bertinetto et al. 2016; Snell et al. 2017;
Wang and Hebert 2016; Zagoruyko and Komodakis 2015]. To the
best of our knowledge, our work is the first to use siamese network
for the malware family classification task, and we zoom into dif-
ferent scales of malware families and investigate the effectiveness
of siamese-network based learning for few shot malware family
classification. In contrast, existing machine learning methods [Fan
et al. 2018b; Suarez-Tangil et al. 2014; Zhang et al. 2014] for the
malware family classification task adopt normal model training
method and investigate the classification performance only at the
overall level.

A remotely related line of research to our work is fault or defect
prediction. Malhotra et al. [Malhotra 2016] uses object-oriented
metrics for defect prediction on Android operating system by 18
machine learning methods, which confirms the predictive capabil-
ity of machine learning methods. HIRER [Fan et al. 2018a], based
on the high-frequency keywords extracted from Abstract Syntax
Trees, is proposed to learn the functional and semantic informa-
tion from Android application source code for predicting defective
files. However, our work is different from fault prediction in two
fundamental ways. First, our goal is to predict the family label of
a malware application, while fault prediction is to predict which
parts of the code is error prone. Second, fault prediction uses nor-
mal machine learning method and it does not have to deal with few
shot learning issue. In contrast, we show that the malware family
classification suffers from few shot learning issue, and our work
explicitly addresses this issue by siamese-network based learning.

3 MALWARE FAMILY PREDICTION
As shown in Figure 1, we formulate the malware family prediction
task as a multi-class classification problem, that is, given a malware
application, classify it into one of three or more malware families.
The malware applications are represented as a multi-dimensional
feature vector reverse-engineered from the applications. A machine
learning classifier is trained using a dataset of malware applications
labeled with their corresponding malware families. The prediction
performance of the classifier is tested with malware applications
unseen during model training, and is evaluated in terms of accuracy,
precision, recall and F1-score.

3.1 Syntactic Features of Malware Applications
In this work, we adopt syntactic features1 for malware analysis,
including 50 Android permissions, 156 critical API calls and 44
attributes of ICC, due to their effectiveness in malware family pre-
diction [Deshotels et al. 2014; Feng et al. 2014; Wang et al. 2014] and
the easiness of decompiling these syntactic features from mobile
applications [Chen et al. 2018, 2016]. We extract these syntactic

1Please visit https://github.com/qWe1aSd/malPre for the list of these features in details.

1562

https://github.com/qWe1aSd/malPre

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Y. Bai, X. Li, Z. Xing, Z. Feng, and D. Ma

features using the AndroGuard tool [Desnos et al. 2011] from the
Smali and XML files of an application.

3.1.1 Android Permission. Android permission gives fine-grained
security features to restrict specific operations of an application
[Wang et al. 2014]. For example, an Android application needs an-
droid.permission.READ_SMS to read SMS messages, and it needs an-
droid.permission.INTERNET to open network sockets. Android pro-
vides an attribute (i.e., pretectionLevel) for each permission, which
can be “normal”, “dangerous”, “signature”, and “signatureOrSys-
tem”. The “normal” permissions have lower risk, while the “dan-
gerous” permissions have higher risk. After excluding the system-
granted permissions with the “signature” and “signatureOrSystem”
attributes [Wang et al. 2014], we collect 50 Android permissions
used by the malware applications in our datasets.

3.1.2 API Call. Sensitive data can be accessed by specific API calls,
such as getAccount to get access to user accounts and updateNet-
work to update system network time. By tracing and analyzing
the call of these APIs, it is possible to characterize the benign or
malicious behaviors of an application. We therefore leverage the
PScout [Au et al. 2012], which produces a mapping between per-
missions and API calls, to identify the APIs related to the selected
50 permissions. Finally, 156 critical APIs are identified for malware
family prediction.

3.1.3 Inter-component Communication (ICC). An Android appli-
cation consists of four components: Activity, Service, Broadcas-
tReceiver, and ContentProvider. Intent, as an abstract description
of an operation to be performed, is employed to accomplish the
inter-component communication. In our work, we consider types
of Intent attributes, which contains 44 ICC features [Avdiienko et al.
2015]. First, Action defines the general action to be performed, for
example, android.intent.action.DIAL to dial a phone number. Second,
Category provides additional information about the action to exe-
cuted, for example, android.intent.category.HOME as the first activity
displayed. At last, few critical Intents are selected from [Avdiienko
et al. 2015] such as android.service.wallpaper.WallpaperService to set
live wallpaper.

3.2 Multi-Class Malware-Family Classifiers
We use four types of multi-class classifiers that are commonly used
for malware family prediction in the literature [Breiman 2001; Hsu
and Lin 2002; Roussopoulos et al. 1995; Safavian and Landgrebe
1991], including k-Nearest Neighbor (KNN), Support Vector Ma-
chine (SVM), Decision Tree (DTree), and Random Forest (RF). A
classifier takes as input the feature vector of a malware application
and produces as output the family label of this application. The
input vector can be either the one-hot feature vector of the appli-
cation’s syntactic features or the neural feature vector computed
by the neural feature extractor (see Section 5.1) from the one-hot
syntactic feature vector. In this work, we investigate two types
of classifier training methods: normal model training method (see
Section 4.1) versus siamese-network based learning method (see
Section 5.1), and study the impact of the two methods on the overall
performance and the performance of different scales of malware
families.

0

50

100

150

200

250

300
M-1

0

200

400

600

800

M-2

0

2000

4000

6000

8000
M-3

0

2000

4000

6000

8000
M-3s

Figure 2: Distribution of the size ofmalware families (X-axis:
malware families2; Y-axis: family size).

KNN is a non-parametric model for classification. It retrieves
the k-nearest training malware applications of a new malware ap-
plication by the Euclidean distance in the feature space, and then
determines the family label of the new malware application based
on the family labels of these k-nearest neighbors by a weighted
max-win strategy. A SVM is a discriminative classifier formally
defined by a separating hyperplane. Given labeled malware appli-
cations (supervised learning), the algorithm outputs an optimal
hyperplane which categorizes new malware applications. A DTree
is a tree-like model of the features of malware applications and their
family labels, where leaves represent family labels and branches
represent conjunctions of features that lead to those family labels.
RF is an ensemble learning method for classification, by construct-
ing multiple decision trees for different random subsets of features.
The family label of a new malware application is produced by the
voting result (“Max Wins” strategy) of all decision trees.

3.3 Datasets
We carry out our experiments on three well-known datasets of An-
droidmalware families: AndroidMalware Genome Project (Genome)
[Zhou and Jiang 2012], Drebin Dataset (Drebin) [Arp et al. 2014]
and AMD Project (AMD) [Wei et al. 2017]. Genome collects more
than 1200 malware applications that cover 49 Android malware
families. Drebin contains 5560 Android applications from 179 dif-
ferent malware families [Arp et al. 2014]. AMD contains 24553
malware applications, which is categorized in 71 malware families
[Wei et al. 2017]. AMD also has a variant that splits some families
into sub-families, and this variant has 136 families.

Besides the applications that can not be decompiled successfully,
we also remove the families with only one application of malware
applications from these datasets, because they cannot be used for
model training and testing. Then we obtain four datasets M-1, M-2
M-3 andM-3s respectively for our experiments. M-1 consists of 1245

2Due to space limitation, we omit the family names. Distribution charts with family
names are available at https://github.com/qWe1aSd/malPre.

1563

https://github.com/qWe1aSd/malPre

Unsuccessful Story about Few Shot Malware Family Classification and Siamese Network to the Rescue ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

malware applications in 33 malware families. M-2 contains 5416
malware applications in 131 malware families. M-3 has 24478 mal-
ware applications in 71 malware families. M-3s has 24478 malware
applications in 134 malware families. Figure 2 shows the family
size (i.e., the number of malware applications) of malware families
in these four dataset. We can find that the family size of all the
four datasets meet the long-tail power-law distribution, which re-
veals the severe imbalance of the family sizes in malware family
datasets. For example, the largest family Airpush in M-3 has the
7842 malware applications, while the smallest family Fobus in M-3
has only 4 malware applications. We refer to these datasets as the
“all” dataset in the performance comparison.

Downsampling is a common method to address the data imbal-
ance issue [He and Garcia 2008]. Note that oversampling is not
adopted because we can not judge whether a newly created mal-
ware represent a meaningful malware and which malware family
it should belong to. To study the impact of downsampling on the
model performance (overall and per family scale), we create a down-
sampling dataset for M-1, M-2, M-3 and M-3s datasets, respectively.
We refer to these downsampling dataset as the “part” dataset in
the performance comparison. We cannot simply downsample all
families to the size of the smallest families, because it will discard
most of the data. Instead, we follow the stratified downsampling
strategy for different family scales [ElRafey and Wojtusiak 2017;
Sun et al. 2009]. Specifically, we downsample the large families to
100 malware applications for each large family, and the medium
families to 10 malware applications for each medium family. Small
families remain intact. The resulting downsampling datasets have
42.89%, 30.50%, 11.20% and 14.55% of the malware applications in
M-1, M-2, M-3 and M-3s datasets, respectively. They have 48.62%,
23.23%, 9.84% and 12.05% of the malware applications in the large
families of the four datasets, respectively, and have 28.88%, 36.29%,
35.96% and 33.88% of the malware applications in the medium fami-
lies of the four datasets, respectively. The small families have 13.86%,
18.28%, 2.63%, and 6.82% of the malware applications in the four
downsampling datasets, which is much more balanced than 5.94%,
5.58%, 0.29%, and 0.99% in the original datasets.

We do not downsample the large and medium by a fixed percent-
age of the family size, because this will make some large families
into medium families, and make some medium families into small
families, depending on the downsampling percentage. In that way,
although we can still compare the overall performance between
the original dataset and the corresponding downsampling ones, we
cannot compare the performance by the family scale between the
original dataset and the corresponding downsampling ones, because
a downsampling dataset has different sets of large/medium/small
families from those of the same family scales in the original dataset.

3.4 Evaluation Metrics
We adopt Accuracy, Precision, Recall and F1-score which are widely
used to evaluate the classification models [Stehman 1997], [Xu et al.
2016], [Xia et al. 2016], [Wang et al. 2016]. Accuracy (ACC) refers
to the correct classification results out of all the malware appli-
cations in the testing dataset. Precision (P) for each family fi is
defined as the proportion of malware applications which is correctly
classified into fi divided by the number of malware applications

classified as fi . Recall (R) for each family fi is defined as the pro-
portion of malware applications which is correctly classified into
fi divided by the number of malware applications labeled as fi . F1-
score (F1) is the harmonic mean of Recall and Precision for each
family. All experiment results in this work are obtained by 10-fold
cross validation (see Section 4.1). For each run, the evaluation met-
ric is the weighted average of that metric over all malware families
(or one scale of families - large, medium, or small) in the testing
data. We then average the evaluation metrics over the 10 runs as the
performance on a dataset. Due to space limitation, the performance
comparison uses F1-score in the paper. But all evaluation metrics
are available at https://github.com/qWe1aSd/malPre.

4 UNSUCCESSFUL STORY OF FEW SHORT
MALWARE FAMILY PREDICTION

In this section, we examine the overall performance of the mal-
ware family classifiers obtained through the normal model training
method, look into the performance differences for large, medium
and small malware families, and study the impact of downsampling
on the overall performance and the performance of different scales
of malware families. Our results confirm the unsuccessful story of
few shot malware-family prediction by the normal model training
method, even though the models’ overall performance is acceptable.

4.1 Normal Model Training Method
We apply 10-fold cross validation in all our experiments. The mal-
ware applications of a large or medium family are randomly split
into 10 equal-size subsets. The remainders left (if any) are randomly
put into these subsets (one per subset). For the small families with
N (N < 10) malware applications, we first adopt the leave-one-out
strategy to obtain N -fold cross validation data. Then, we randomly
duplicate 10−N folds of these N folds. The original N folds and the
duplicate 10 − N folds constitute the 10-fold cross validation data
for the small families. In this way, we guarantee at least 1 sample
for each family in the testing data.

We use 9 subsets of data as the training data, and one subset as
the testing data. We denote this normal model training method as
“nosia”, as opposed to siamese-network based learning method (see
Section 5.1). We first split the downsampling dataset into 10-fold
training/testing data for the experiments on the “part” datasets.
Then, we split the data left in the original dataset after downsam-
pling into 10 subsets. These 10 subsets contain only the malware
applications in the large and medium families. We add these sub-
sets of large and medium family data to the corresponding “part”
training data for training the model in “all” setting. In this way,
the testing data is the same in the “all” versus “part” settings for
across-setting comparison.

4.2 Model Hyperparameters Optimization
We adopt the grid search method [Ndiaye et al. 2018] with a 5-fold
cross validation for optimizing the hyperparameters of the four
classifiers. We use M-1 for this optimization purpose. As M-1 is the
smallest dataset, we have low risk of model overfitting for the other
three larger datasets. After model optimization, the same classifier
settings are used for the experiments on all the four datasets.

1564

https://github.com/qWe1aSd/malPre

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Y. Bai, X. Li, Z. Xing, Z. Feng, and D. Ma

Table 1: Performance Metrics on M-1

ACC P R F1

nosia_part

SVM 0.927 0.889 0.927 0.904
DTree 0.9 0.862 0.9 0.875
RF 0.948 0.92 0.948 0.932
KNN 0.94 0.92 0.94 0.926

nosia_all

SVM 0.943 0.914 0.943 0.926
DTree 0.903 0.866 0.903 0.879
RF 0.95 0.925 0.95 0.934
KNN 0.96 0.946 0.96 0.951

SV
M

DT
re

e RF KN
N

0.6
0.7
0.8
0.9
1.0

F1

M-1
nosia_part nosia_all

SV
M

DT
re

e RF KN
N

M-2

nosia_part
nosia_all

SV
M

DT
re

e RF KN
N

M-3

nosia_part
nosia_all

SV
M

DT
re

e RF KN
N

M-3s

nosia_part
nosia_all

Figure 3: Overall performance: nosia_all versus nosia_part.
All sub-figures share the same y-axis.

Weuse the SVMwith RBF (Radial Basis Function) kernel function
[Vert et al. 2004]. We experiment the penalty parameter C and the
kernel parameter γsvm with the values {0.001, 0.01, 0.1, 1, 3, 5, 10}
as search space, and finally set the two parameters at 10 and 0.01,
respectively. For DTree, we setmax_depth (the maximum depth of
decision tree) at 157 after experimenting themax_depth from 1 to
250, and we apply information gain as well as “best” split strategy
at each node. In RF, we set max_depth (the maximum depth of
decision tree) at 20 and n_estimators (the number of decision trees
in forest) at 150, after experimenting the two parameters with the
values {5, 10, 20, 40, 80, 100, 150, 200, 250}. For the KNN, we set k
(the number of neighbors contributing to the classification decision)
at 2 after experimenting the k from 1 to 10.

4.3 Results
RQ1: What is the overall performance of the four malware-
family classifiers obtained through normal machine learn-
ing methods? What is the impact of downsampling on the
overall performance?

Table 13 summarizes the performance metrics of the four classi-
fiers obtained by the normal model training method (“nosia”) on the
original (“all”) M-1 dataset versus the downsampling (“part”) M-1
dataset. We can see that a simple KNN classifier in the nosia_all set-
ting achieves the best overall performance, with the accuracy (ACC)
0.960, precision (P) 0.946, recall (R) 0.960 and F1-score (F1) 0.951
on average. Our experiment results are consistent with existing
studies that also use the M-1 dataset for malware family prediction,
Dendroid [Suarez-Tangil et al. 2014], Astroid [Feng et al. 2016], and
DroidSIFT [Zhang et al. 2014], which report the prediction accuracy
0.942, 0.938 and 0.930, respectively. Note that these existing studies
do not report precision, recall and F1-score. Furthermore, they do
not conduct experiments on the other three datasets we use. But the
3The tables of the performance metrics on the other three datasets are available at
https://github.com/qWe1aSd/malPre.

SVM, DTree and RF classifiers we use replicate their classification
methods.

Figure 3 visualizes the overall performance in both the nosia_all
and nosia_part settings. Box-plots show the weighted average F1-
score of a classifier over all families in a dataset in the 10 runs of
cross validation. Therefore, we have 16 classifier-dataset combina-
tions for each setting. The same figure format is used to visualize
the performance results in other RQs.

Figure 3 shows that KNN also performs very well on M-2 (a
medium-size dataset). But SVM outperforms the other three classi-
fiers on the largest dataset M-3 and M-3s. Across the four datasets,
we do not see an always-winner when comparing the two classifiers.
In fact, the average F1-scores of the four classifiers on a dataset are
close with the minor differences about 0.072 ± 0.022. Comparing
the performance across the four datasets, we find that the num-
ber of malware families in a dataset (i.e., the number of classes to
predict) affects the performance the most. When the number of
malware families in the datasets are close (e.g., M-2 versus M-3s),
the less data a dataset has (M-2 in this comparison), the poorer the
prediction performance is.

Comparing the performance metrics of the same classifiers in the
nosia_all vs. the nosia_part settings (i.e., the original versus down-
sampling datasets), we find that downsampling cannot effectively
address the severe data imbalance issue in the malware datasets. In
fact, among the 16 pairs of comparison (4 classifiers by 4 datasets),
downsampling leads to poorer performance in 13 cases (with the
F1-score differences about 0.039 ± 0.002). Only in two cases (RF
on M-3 and M-3s), downsampling improves the classifier perfor-
mance. In Figure 4, we can see that this is because downsampling
significantly improve the RF’s prediction performance on the small
families in M-3 and M-3s. We will further elaborate the impact of
downsampling on different-scales malware families in the next RQ.

For the Android malware family classification task, a variety
of multi-class classifiers can achieve very good overall prediction
performance. Although downsampling can create more balanced
data across families, it generally leads to worse prediction per-
formance than using the original imbalanced data.

RQ2: Do malware family classifiers obtained through nor-
mal machine learning methods perform consistently across
large, medium and small families? How does downsampling
affect the prediction result on different-scales of families?

Figure 4 visualizes in box plots the performance of the four
classifiers on the large/medium/small families in the four datasets.
It shows the weighted average F1-score of a classifier overall the
families of a particular scale in a dataset. As shown in Figure 4, it
illustrates the prediction performance of normal machine learning
methods on large, medium and small families in the four datasets.
We can see a clear downward trend from the large families to the
medium and small families for all 16 classifier-dataset combinations.
Although the F1-score on the medium families are still acceptable
(higher than 0.8) in 9 out of 16 cases in the nosia_all setting, the
F1-scores on the small families of M-2/M-3/M-3s drop below 0.7 in
10 out of 12 cases in the nosia_all setting, and the F1-scores of the
four classifiers on the small families of M-3s drop to around 0.5. The

1565

https://github.com/qWe1aSd/malPre

Unsuccessful Story about Few Shot Malware Family Classification and Siamese Network to the Rescue ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

M-1 with SVM
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F1

nosia_part nosia_all

M-1 with DTree

nosia_part
nosia_all

M-1 with RF

nosia_part
nosia_all

M-1 with KNN

nosia_part
nosia_all

M-2 with SVM
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F1

nosia_part
nosia_all

M-2 with DTree

nosia_part
nosia_all

M-2 with RF

nosia_part
nosia_all

M-2 with KNN

nosia_part
nosia_all

M-3 with SVM
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F1

nosia_part
nosia_all

M-3 with DTree

nosia_part
nosia_all

M-3 with RF

nosia_part
nosia_all

M-3 with KNN

nosia_part
nosia_all

lar
ge

med
ium sm
all

M-3s with SVM

0.4
0.5
0.6
0.7
0.8
0.9
1.0

F1

nosia_part
nosia_all

lar
ge

med
ium sm
all

M-3s with DTree

nosia_part
nosia_all

lar
ge

med
ium sm
all

M-3s with RF

nosia_part
nosia_all

lar
ge

med
ium sm
all

M-3s with KNN

nosia_part
nosia_all

Figure 4: Performance by family scales: nosia_all versus
nosia_part. All sub-figures share the same x-axis and y-axis.

relative better F1-score on the small families of M-1 is because M-1
has much fewer number of malware families (only 33) to predict
than the other three datasets.

Figure 4 shows that the F1-scores on the large families in the
nosia_all setting versus in the nosia_part setting are very close
(with differences less than 0.035) for all 16 classifier-dataset com-
binations. That is, downsampling does not significantly affect the
performance on the large families. However, the F1-scores on the
medium families in the nosia_part setting are worse than those in
the nosia_all setting in 15 out of 16 cases. For the small families,
the F1-scores in the nosia_part setting are better than those in the
nosia_all setting in 9 cases, close with differences less than 0.035 in 5
cases, and just worse in 2 cases. In the downsampling datasets, small
families are less overwhelmed by the large and medium families.
This helps the model capture important features of small families,
and results in the performance improvements on the small families.

In Figure 4, we also observe that the variations of the F1-scores on
the large families are small (evident in the narrow boxes and quan-
tile marks) across the 10-fold cross validation for all 16 classifier-
dataset combinations. This suggests that the model generalizes
well on the large families. However, the F1-scores on the medium
and small families have much larger variations across the 10-fold
cross validation, which indicates poor generalizability. This poor
generalizability becomes even more obvious when looking into the
F1-scores on each family across the 10-fold cross validation. Fig-
ure 5 shows the F1-score variations (upper sub-figure) and variances
(lower sub-figure) on each family in the M-3 dataset by SVM across
the 10-fold cross validation. We can see that F1-score variance in the
nosia_all setting (orange bar in Figure 5) is small for large families
with > 100 malware applications. But F1-score variance is > 0.3
for many medium and small families.

In fact, the F1-score variances in the nosia_all setting are larger
than 0.3 for 125 families in the four datasets (M-1: 11, M-2: 38, M-3:

21, M-3s: 55), among which 67 are medium families (M-1: 5, M-2:
19, M-3: 16, M-3s: 27) and 58 are small families (M-1: 6, M-2: 19,
M-3: 5, M-3s: 28). For these 58 small families, the lowest F1-score
is 0 and the highest F1-score is 1. The F1-score variances in the
nosia_part setting (blue bar in Figure 5) have the similar situations.
That is, downsampling cannot reduce performance variances. In
some cases, downsampling may even increase the F1-score vari-
ances (see Figure 5). Similar observations can be made for other
classifier-dataset combinations4.

For the Android malware family classification task, all clas-
sifiers performs inconsistently on all datasets, with the best per-
formance on the large families, acceptable performance on the
medium families, but much worse performance on the small
families. Furthermore, the classifiers suffer from poor generaliz-
ability on the medium and small families. Downsampling cannot
make the classifiers perform consistently across different family
scales. It cannot improve the model generalizability either.

5 SIAMESE NETWORK TO THE RESCUE
In this section, we propose a siamese-network based learningmethod
to tackle the performance and generalization issues for the few shot
malware-family prediction revealed in the last section. We compare
the overall performance of the malware-family classifiers obtained
through the normal model training method versus the siamese-
network based learning method, and the performance of these clas-
sifiers on large, medium and small families respectively. Our results
confirm the superior performance of the siamese-network based
learning method over the normal model training method, especially
for the few shot malware-family prediction, which further lead to
the significant improvement of the overall performance. By compar-
ing the performance of MLP-based feature extractors obtained with
the normal model training method versus the siamese-network
based learning, we confirm that the performance improvements
come from the siamese-network based learning, rather than the
adoption of MLP-based feature extractor.

5.1 Siamese-Network Based Learning Method
Figure 6 presents our framework for siamese-network based learn-
ing. It consists of two steps: step 1 - train a MLP-based feature
extractor by siamese network, and step 2 - perform malware-family
classification with the trained MLP-based feature extractor.

As shown in Figure 6, a siamese network consists of two identical,
weight-sharing Multilayer Perceptron (MLP) networks. This MLP
network takes as input a 250-dimensional one-hot feature vector
(see Section 3.1) of a malware application and produce as output a
250-dimensional real-valued, neural feature vector for this applica-
tion. Therefore, we call this MLP network as the MLP-based feature
extractor for malware applications. Our MLP consists of three fully
connected layers, which contain 1024, 512 and 256 hidden units (i.e.,
neuron), respectively, and use ReLU (ReLU (x) =max(0,x)) [Glorot
et al. 2011] as non-linear activation function. Our MLP is able to
learn the implicit relationships among syntactic features.
4Please find the charts for other classifier-dataset combinations like Figure 5 at https:
//github.com/qWe1aSd/malPre.

1566

https://github.com/qWe1aSd/malPre
https://github.com/qWe1aSd/malPre

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Y. Bai, X. Li, Z. Xing, Z. Feng, and D. Ma
78

42
33

84
21

68
18

20
13

00
12

69
11

99 64
7

55
8

54
6

40
2

32
8

23
5

21
5

20
3

19
7

17
5

17
2

17
0

16
5

14
5

12
8

10
9 76 70 69 67 53 48 46 46 44 43 36 25 24 24 23 23 21 21 21 19 18 17 17 17 16 15 15 13 13 13 12 12 12 10 10 10 10 9 9 9 8 7 6 5 5 5 5 4

0.0
0.2
0.4
0.6
0.8
1.0

F1

nosia_part nosia_all sia_part

78
42

33
84

21
68

18
20

13
00

12
69

11
99 64
7

55
8

54
6

40
2

32
8

23
5

21
5

20
3

19
7

17
5

17
2

17
0

16
5

14
5

12
8

10
9 76 70 69 67 53 48 46 46 44 43 36 25 24 24 23 23 21 21 21 19 18 17 17 17 16 15 15 13 13 13 12 12 12 10 10 10 10 9 9 9 8 7 6 5 5 5 5 4

Application Number in Each Family

0.0
0.1
0.2
0.3
0.4
0.5

F1
 V

ar
ia

nc
e nosia_part nosia_all sia_part

Figure 5: F1-score variations (upper sub-figure) and variance (lower sub-figure) for each family in M-3 by SVM across the
10-fold cross validation. Both sub-figures share the same x-axis.

Training the siamese network requires pairs of malware applica-
tions (one for each MLP network). Positive (or negative) pairs are
the two malware applications from the same malware family (or
different malware families). We create positive pairs pair-wisely in
a malware family. If a family has N malware applications, we will
create N × (N − 1)/2 positive pairs. We create negative pairs for
each malware application in a family and all malware applications
in the other families. Duplicate negative pairs will be discarded.
Given a dataset for positive/negative pairs of malware applications,
the training of the siamese network (i.e., the twin MLP networks)
is guided by the contrastive loss function [Hadsell et al. 2006] as
follows:

L(W ,Y ,X1,X2) = (1−Y)
1
2 (DW)2 + (Y)

1
2 {max(0,m − DW)}2 (1)

where DW is the Euclidean distance, 1
2 (DW)2 is the partial loss

function for a positive pair with Y = 0, 12 {max(0,m − DW)}2 is the
partial loss function for a negative pair with Y = 1, andm > 0 is a
margin to define a radius around each instance (X1 or X2) of pair.
The target of contrastive loss function is to learn theW so that
malware applications of the same families are pulled together and
those of different families are pushed apart.

We create the dataset of positive/negative pairs of malware appli-
cations from the training data (see Section 4.1) of the downsampling
(“part”) dataset (see Section 3.3) of the M-1, M-2, M-3 and M-3s,
respectively. Table 2 summarizes the number of positive/negative
pairs created for the four datasets. Recall that the downsampling
datasets have only 42.89%, 30.50%, 11.20% and 14.55% of themalware
applications in the M-1, M-2, M-3 and M-3s datasets, respectively.
However, the number of positive pairs created for a dataset is at
least 4 times more than the number of malware applications in the
original dataset. This creates more opportunities for the MLP-based
feature extractor to learn the common features that the malware
applications in the same family share, compared with learning the
commonalities from each malware application individually in the
normal model training method. Furthermore, the even more neg-
ative pairs create the opportunity to learn distinctive features to
tell apart the malware applications from different families. This is
especially important for the small families, as it helps the model
distinguish the characteristics of the small families by contrasting
their few instances with a large number of negative samples from
other families. This explicit negative-contrast capability is absent
in the normal model training method.

Table 2: The Number of Positive/Negative Pairs Created

M-1 M-2 M-3 M-3s
Positive pair 16317 48834 118471 140562
Negative pair 126528 1316544 3639440 6169566

Figure 6: Siamese network based learning.

After training the siamese network, its MLP network is used
as a feature extractor for malware family classification. The step
2 works in the same way as the normal multi-class classification
in Figure 1. But the multi-class classifier in Step 2 takes as input
the neural feature extractor outputted by the MLP-based feature
extractor, rather than the one-hot syntactic feature vector. The
training data is the 9 subsets of the “part” dataset. We refer to
the classifiers obtained through siamese-network based learning
as “sia_part”. KNN can be directly applied to search the k-nearest
neighbors by the neural feature vectors. SVM, DTree and RF are
trained in the same way as described in Section 4.1. When training
SVM/DTree/RF, we freeze the parameters of the MLP network.

1567

Unsuccessful Story about Few Shot Malware Family Classification and Siamese Network to the Rescue ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

5.2 Model Hyperparameter Optimization
Same as in Section 4.2, we use M-1 for hyperparameter optimiza-
tion. Same hyperparameters are adopted for M-2, M-3 and M-3s.
For the MLP networks in siamese network framework, we focus
on iteration, batch size and learning rate as optimization tar-
gets. When tuning one of the three hyperparameter, the other
two are fixed. Iteration: Generally, more iterations bring better
accuracy rate during training neural network, but cost more train-
ing time. In order to balance the accuracy rate and time cost, we
set the number of training iteration to 50 with the value space
{1, 5, 10, 20, 50, 100, 150, 200, 500, 1000, 2000}. Batch Size: In neu-
ral network, batch size defines the number of malware applica-
tions whose classification loss will be backpropagated through
the network. Based on a fitted batch size, neural network trains
faster and achieve better results. In our experiments, we set 256
batch size for training siamese network after experimenting the
batch size with 32, 64, 128 and 256. Learning Rate. The learn-
ing rate is the weight update rate of neural network in Adam al-
gorithm [Kingma and Ba 2014]. The lower the learning rate is,
the better capability of convergence the model obtains. We set a
learning rates 0.0005 after experimenting this parameter with the
value {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}. We use the de-
fault value of the other hyperparameters in Adam according to
keras documentation [Chollet et al. 2015]. The hyperparameters of
the multi-class classifiers in Step 2 adopt the same settings as those
described in Section 4.2.

5.3 Results
RQ3: How does the performance of the classifiers obtained
by siamese-network based learning comparewith that of the
classifiers obtained by normal model training method?

Figure 7 shows the overall performance of the four classifiers
on the four datasets in both the sia_part and nosia_all settings. As
sia_part and nosia_part uses the same “part” training data, and
nosia_part generally has worse performance than nosia_all (see
Figure 3), we show only nosia_all in Figure 7 for clarification.

We can see that the sia_part setting outperforms the nosia_all
setting in all 16 classifier-dataset combinations, with 0.049−0.125 F1-
score improvement. The lowest average F1-score in sia_part is 0.893
by DTree on M-2, but this F1-score is higher than the F1-scores of
12 out of 16 cases in nosia_all. Note that M-2 is the most challenging
data as it has 131 families but only 5416 malware applications. The
F1-scores of 15 out of 16 cases in sia_part are higher than 0.9, and
the rest one has the F1-score 0.893. Furthermore, Figure 7 shows
that the F1-score variations in sia_part become smaller than the
F1-score variations in nosia_all for 13 out of 16 classifier-dataset
combinations.

We conduct T-test [Paternoster et al. 1998] on the F1-score dif-
ferences between the sia_part and nosia_all settings. Our T-test5
shows that the F1-score differences between the two settings are
statistically significant overall (p-value=6.28E − 50) for all 160 runs
(4 classifiers × 4 datasets × 10 runs), and are also statistically sig-
nificant (p-value < 0.05) for the 10 runs of each classifier-dataset
combination. Our T-test also shows that the differences in F1-score

5All test results are available at https://github.com/qWe1aSd/malPre.

SV
M

DT
re

e RF KN
N

0.6
0.7
0.8
0.9
1.0

F1

M-1
nosia_all sia_part

SV
M

DT
re

e RF KN
N

M-2

nosia_all
sia_part

SV
M

DT
re

e RF KN
N

M-3

nosia_all
sia_part

SV
M

DT
re

e RF KN
N

M-3s

nosia_all
sia_part

Figure 7: Overall performance: sia_part versus nosia_all. All
sub-figures share the same y-axis.

M-1 with SVM
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F1

nosia_all sia_part

M-1 with DTree

nosia_all
sia_part

M-1 with RF

nosia_all
sia_part

M-1 with KNN

nosia_all
sia_part

M-2 with SVM
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F1

nosia_all
sia_part

M-2 with DTree

nosia_all
sia_part

M-2 with RF

nosia_all
sia_part

M-2 with KNN

nosia_all
sia_part

M-3 with SVM
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F1

nosia_all
sia_part

M-3 with DTree

nosia_all
sia_part

M-3 with RF

nosia_all
sia_part

M-3 with KNN

nosia_all
sia_part

lar
ge

med
ium sm
all

M-3s with SVM

0.4
0.5
0.6
0.7
0.8
0.9
1.0

F1

nosia_all
sia_part

lar
ge

med
ium sm
all

M-3s with DTree

nosia_all
sia_part

lar
ge

med
ium sm
all

M-3s with RF

nosia_all
sia_part

lar
ge

med
ium sm
all

M-3s with KNN

nosia_all
sia_part

Figure 8: Performance by family scales: sia_part versus
nosia_all. All sub-figures share same the x-axis and y-axis.

variance between the two settings are statistically significant (p-
value=4.26E − 4).

The classifiers obtained by siamese-network based learning
perform statistically significantly better than those obtained by
normal model training method, even though siamese-network
based learning uses only a small percentage (e.g., 11.20% for M-3)
of all data used in normal model training method. This perfor-
mance boost cannot be achieved by simple data downsampling
with normal model training method (see RQ1 in Section 4.3).

RQ4: How does siamese-network based learning affect the
performance on different-scales of families?

Figure 8 show the performance of a classifier on the three family
scales of a dataset in both the sia_part and nosia_all settings.We can
see the performance boost by sia_part over nosia_all in all 48 cases
(4 classifiers × 3 family scales × 4 datasets). The performance boost
is the most evident for small families, with 0.077 − 0.348 improve-
ment in F1-score for the 16 classifier-dataset combinations. Sia_part
has relatively smaller performance boost for medium families, but
the F1-scores on medium families still improve 0.058− 0.159 for the
16 classifier-dataset combinations. The F1-scores on large families

1568

https://github.com/qWe1aSd/malPre

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Y. Bai, X. Li, Z. Xing, Z. Feng, and D. Ma

Figure 9: Malware family classification with MLP-based fea-
ture extractor trained by normal model training method.

are already very high (around 0.91) in the nosia_all setting, but
sia_part can still improve the performance further (with 0.029-0.107
F1-score improvement).

Figure 8 shows that accurate prediction on small families is still
more challenging than that on medium and large families, However,
the performance gap across the three family scales become much
narrower in the sia_part setting than in the nosia_all setting. The
F1-scores on the large/medium/small families of the M-1 dataset
are almost the same (with the differences < 0.093). For the other
three datasets, the F1-score differences between the large families
and the small families in the sia_part setting are < 0.1 in 5 out
of 12 classifier-dataset combinations, and are in 0.1 − 0.25 in the
other 5 cases. In contrast, the F1-score differences between the large
families and the small families in the nosia_all setting are > 0.25 in
7 out of the 12 cases.

The green bars in Figure 5 show the F1-score variances for each
family in M-3 by SVM across the 10-fold cross validation in the
sia_part setting. sia_part has only 1 medium families and 2 small
families with F1-score variance larger than 0.2. This is much fewer
than nosia_all (16 medium families and 5 small families with F1-
score variance larger than 0.2) and nosia_part (17 medium families
and 6 small families with F1-score variance larger than 0.2). Fur-
thermore, there are 65 families with 0 or < 0.02 F1-score variances
across the 10-fold cross validation in sia_part. In contrast, nosia_all
and nosia_part have only 32 and 27 such families respectively.

Siamese-network based learning can significantly boost the
performance of malware family classification for all scales of
families. The smaller the family is, the larger it can boost the
performance. As such, it can narrow the performance gap be-
tween the large and small families. Combining downsampling
with siamese-network based learning can improve the model
generalizability, especially for medium and small families.

RQ5: Can themalware family classification withMLP-based
feature extractor trained by thenormalmodel trainingmeth-
ods achieve the same performance boost as the MLP trained
by siamese-network based learning?

Figure 9 shows the framework for the malware family classifi-
cation task with MLP-based feature extractor trained by normal
model training method. Different from the framework in Figure 1
in which the classifier takes as input the one-hot syntactic feature
vector, the classifier in Figure 9 takes as input the neural feature
vector computed by the MLP network from the one-hot syntactic
feature vector. The MLP network in Figure 9 has the same network
structure as the MLP network in Figure 6. At the inference time,
the framework in Figure 9 works in the same way as the Step 2 in
Figure 6, but the MLP network and the multi-class classifier are

SV
M

DT
re

e RF KN
N

0.6
0.7
0.8
0.9
1.0

F1

M-1
sia_part mlp_part mlp_all

SV
M

DT
re

e RF KN
N

M-2

sia_part
mlp_part
mlp_all

SV
M

DT
re

e RF KN
N

M-3

sia_part
mlp_part
mlp_all

SV
M

DT
re

e RF KN
N

M-3s

sia_part
mlp_part
mlp_all

Figure 10: Overall performance: sia_part, mlp_part and
mlp_all. All sub-figures share the same y-axis.

trained in different ways. In Figure 6, the MLP network is trained
by the siamese network in Step 1 and its parameters are frozen
when training the classifier in Step 2. In contrast, the MLP network
in Figure 9 uses the normal model training method described in
Section 4.1 with cross entropy loss function. Then, we freeze its
parameters for training the later multi-class classifiers in Figure 9.
Note that both MLP network and classifiers adopt the same hyper-
parameters described in Section 4.2 and Section 5.2. The training is
done for both the “all” and “part” datasets, which is referred to as
mlp_all and mlp_part respectively.

Figure 10 shows the overall performance of a classifier on a
dataset in the three different settings: sia_part, mlp_all andmlp_part.
We can see that sia_part achieves significantly higher (0.06− 0.299)
F1-scores than mlp_all and mlp_part in all 16 classifier-dataset com-
binations. The improvement is statistically significant overall for all
160 runs (4 classifiers× 4 datasets× 10 runs), and the 10 runs of each
classifier-dataset combination. In fact, the performance of mlp_all
is even worse than that of nosia_all in 14 out of 16 classifier-dataset
combinations (see Figure 3). For mlp_part versus nosia_part, the
number of such cases is 12 out of 16 cases. Recall that nosia_part
still has two cases (RF on M-3 and M-3s) in which downsampling
leads to 0.033 and 0.034 F1-score improvement over nosia_all (see
Figure 3). Unfortunately, the performance of mlp_part is either
close to or worse than that of mlp_all.

An interesting observation is that KNN is the best performer
over the SVM, DTree and RF on all the four datasets in both mlp_all
and mlp_part. The performance gap between the KNN and the
other three classifiers is generally larger on the small dataset M-1
and the medium dataset M-2, compared with the performance gap
on the two large datasets M-3 and M-3s. Note that KNN is a non-
parametric method and does not training, while the other three
classifiers require training. In contrast, the performance gap of the
four classifiers in sia_part is much narrower (F1-score difference
< 0.05), no matter the classifiers require training or not.

The results in Figure 10 indicates that the MLP network is not
well trained by the normal model training method. As the MLP
network involves three fully connected layers, training the classi-
fier with the MLP network would require more data than training
the classifier alone. The size of malware family datasets does not
satisfy this requirement. As a result, the MLP trained by normal
model training method performs poorly in encoding the one-hot
syntactic feature vector into the neural feature vector, which turns
out to be even harder to classify. In contrast, we can prepare a large
number of positive/negative pairs for sufficiently training the MLP
network in siamese network. This well-trained MLP network can

1569

Unsuccessful Story about Few Shot Malware Family Classification and Siamese Network to the Rescue ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

effectively extract neural features to distinguish malware applica-
tions in the same or different families, which leads to significantly
better classification performance.

MLP-based feature extractor, if not well trained by siamese
network, cannot result in the performance boost in malware
family classification, but the performance degradation.

6 THREATS TO VALIDITY
The study presented in this paper is subject to some limitations
that could potentially threaten our experiment results and findings.

An internal threat is the hand-picked syntactic features used
to represent malware applications. We do not use all permissions,
APIs and ICC attributes in Android API documentation. Instead,
we use a subset of these syntactic features, which has been shown
to be effective to detect or classify Android malware in several stud-
ies [Avdiienko et al. 2015; Deshotels et al. 2014; Wang et al. 2014].
Meanwhile, those syntactic features are interpretable because of a
detailed description in Android documentation, and can be conve-
niently extracted from source code without the need for complex
program graph analysis.

Another internal threat is the downsampling strategy and the
definition of the family scale. Due to the severe data imbalance
(thousands malware applications in some families but just a few
in others), we cannot use a simple downsampling approach to
downsample all families to the smallest family size. Therefore, we
adopt the stratified samplingmethod by different family scale. Based
on the observation of the family size distribution, we empirically
set the families with more than 100 malware applications as large,
those with 10 to 100 malware applications as medium, and those
with less than malware applications as small. This family scale
definition allows us to compare the performance across the datasets.
For a dataset with significantly different family size distribution,
the family scale boundary may have to be refined, which may affect
some experiment results. However, it should not fundamentally
affect our conclusions, especially those for small families.

An external threat is the quality and representativeness of the
malware family datasets we use in this study. These four datasets
have been constructed by security experts, and have also been used
in existing studies for malware analysis. We believe the quality of
malware families in these datasets should be good. Furthermore,
these four datasets cover a wide range of malware families that
appear over a long period of time. Thus, the malware families
in these datasets should be representative. And we observe very
similar data characteristics and obtain very similar results across
the four datasets, which also indicates the generalization of our
findings. Of course, we can further confirm our finding on new
malware family dataset when they become available.

7 CONCLUSION AND FUTUREWORK
In this paper, we zoom into the problem of malware family classi-
fication at three different family scales (large, medium and small).
We find that although the multi-class malware family classifiers
achieve very good classification accuracy at the overall level and
for the large families, the accuracy drops significantly for few shot

malware families. Furthermore, the generalizability of the classi-
fiers also become worse for few shot malware families. Our findings
are generalizable for the four malware family datasets with very
different sets of malware applications and very different definition
of malware families, as well as very different number of malware
applications and malware families.

Motivated by our findings, we propose a siamese-network based
learning method and a MLP-based classifier for addressing the issue
of few shot malware family classification. Our method is completely
different from existing methods in terms of feature learning and
model training. Our experiments show that the performance of
malware family classifiers obtained through our method are signif-
icantly better than that of the classifiers obtained through normal
model training method in existing work, even though our classifiers
are trained using only a small percentage of the whole dataset used
in normal model training method. Furthermore, our classifiers nar-
row the performance gap between the large and few shot families
and improves themodel generalizability, especially for few shot fam-
ilies. We also show that these benefits cannot be obtained through
simple downsampling method or just MLP-based feature extractor,
without using the siamese-network based learning method.

In the future, we are interested in experimenting different syntac-
tic features for the malware family classification task, and exploring
external knowledge (e.g., API description embeddings) to address
the few shot malware family classification issue.

ACKNOWLEDGMENTS
We appreciate the anonymous reviewers for their beneficial feed-
back. This work has partially been sponsored by the National Sci-
ence Foundation of China (No. 61872262, 61572349).

REFERENCES
Kevin Allix, Tegawendé F Bissyandé, Quentin Jérome, Jacques Klein, Yves Le Traon,

et al. 2016. Empirical assessment of machine learning-based malware detectors for
Android. Empirical Software Engineering 21, 1 (2016), 183–211.

Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and
CERT Siemens. 2014. Drebin: Effective and explainable detection of android mal-
ware in your pocket.. In Ndss, Vol. 14. 23–26.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. In Acm Sigplan Notices, Vol. 49. ACM, 259–269.

Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. Pscout: analyzing
the android permission specification. In Proceedings of the 2012 ACM conference on
Computer and communications security. ACM, 217–228.

Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven
Arzt, Siegfried Rasthofer, and Eric Bodden. 2015. Mining apps for abnormal usage
of sensitive data. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 426–436.

Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS
Torr. 2016. Fully-convolutional siamese networks for object tracking. In European
conference on computer vision. Springer, 850–865.

Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. 1994.

Signature verification using a "siamese" time delay neural network. In Advances in
neural information processing systems. 737–744.

Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. 2004. Special issue on
learning from imbalanced data sets. ACM Sigkdd Explorations Newsletter 6, 1 (2004),
1–6.

Sen Chen, Minhui Xue, Lingling Fan, Shuang Hao, Lihua Xu, Haojin Zhu, and Bo Li.
2018. Automated poisoning attacks and defenses in malware detection systems: An
adversarial machine learning approach. computers & security 73 (2018), 326–344.

Sen Chen, Minhui Xue, Zhushou Tang, Lihua Xu, and Haojin Zhu. 2016. Stormdroid:
A streaminglized machine learning-based system for detecting android malware. In
Proceedings of the 11th ACM on Asia Conference on Computer and Communications

1570

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Y. Bai, X. Li, Z. Xing, Z. Feng, and D. Ma

Security. ACM, 377–388.
François Chollet et al. 2015. Keras. https://keras.io.
Ronan Collobert and Samy Bengio. 2004. Links between perceptrons, MLPs and SVMs.

In Proceedings of the twenty-first international conference on Machine learning. ACM,
23.

Luke Deshotels, Vivek Notani, and Arun Lakhotia. 2014. Droidlegacy: Automated
familial classification of android malware. In Proceedings of ACM SIGPLAN on
program protection and reverse engineering workshop 2014. ACM, 3.

Anthony Desnos et al. 2011. Androguard.
Amr ElRafey and Janusz Wojtusiak. 2017. Recent advances in scaling-down sampling

methods in machine learning. Wiley Interdisciplinary Reviews: Computational
Statistics 9, 6 (2017), e1414.

Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang Pu,
and Zhendong Su. 2018c. Large-scale Analysis of Framework-specific Exceptions
in Android Apps. In Proceedings of the 40th International Conference on Software
Engineering (ICSE ’18). ACM, 408–419.

Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua Zheng, and Ting Liu.
2018b. Android malware familial classification and representative sample selection
via frequent subgraph analysis. IEEE Transactions on Information Forensics and
Security 13, 8 (2018), 1890–1905.

Yaqing Fan, Xinya Cao, Jing Xu, Sihan Xu, and Hongji Yang. 2018a. High-Frequency
Keywords to Predict Defects for Android Applications. In 2018 IEEE 42nd Annual
Computer Software and Applications Conference (COMPSAC), Vol. 2. IEEE, 442–447.

Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-based
detection of android malware through static analysis. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, 576–587.

Yu Feng, Osbert Bastani, RubenMartins, Isil Dillig, and Saswat Anand. 2016. Automated
synthesis of semantic malware signatures using maximum satisfiability. arXiv
preprint arXiv:1608.06254 (2016).

Sa Gao, Chunyang Chen, Zhenchang Xing, Yukun Ma, Wen Song, and Shang-Wei Lin.
2019. A neural model for method name generation from functional description.
In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 414–421.

Joshua Garcia, Mahmoud Hammad, and Sam Malek. 2018. Lightweight, obfuscation-
resilient detection and family identification of android malware. ACM Transactions
on Software Engineering and Methodology (TOSEM) 26, 3 (2018), 1–29.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier neural
networks. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics. 315–323.

Qianyu Guo, Sen Chen, Xiaofei Xie, Lei Ma, Qiang Hu, Hongtao Liu, Yang Liu, Jianjun
Zhao, and Xiaohong Li. 2019. An empirical study towards characterizing deep
learning development and deployment across different frameworks and platforms.
In 2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 810–822.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality Reduction by
Learning an Invariant Mapping. In Proceedings of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition - Volume 2 (CVPR ’06). IEEE
Computer Society, 1735–1742.

Zhuobing Han, Xiaohong Li, Zhenchang Xing, Hongtao Liu, and Zhiyong Feng. 2017.
Learning to predict severity of software vulnerability using only vulnerability
description. In 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 125–136.

Haibo He and Edwardo A Garcia. 2008. Learning from imbalanced data. IEEE Transac-
tions on Knowledge & Data Engineering 9 (2008), 1263–1284.

Chih-Wei Hsu and Chih-Jen Lin. 2002. A comparison of methods for multiclass support
vector machines. IEEE transactions on Neural Networks 13, 2 (2002), 415–425.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese neural net-
works for one-shot image recognition. In ICML deep learning workshop, Vol. 2.

Ruchika Malhotra. 2016. An empirical framework for defect prediction using machine
learning techniques with Android software. Applied Soft Computing 49 (2016),
1034–1050.

McAfee-Labs. 2018. McAfee Labs Threats Report. Retrieved August,
2019 from https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-
threats-dec-2018.pdf

Niall McLaughlin, Jesus Martinez del Rincon, BooJoong Kang, Suleiman Yerima, Paul
Miller, Sakir Sezer, Yeganeh Safaei, Erik Trickel, Ziming Zhao, Adam Doupé, et al.
2017. Deep android malware detection. In Proceedings of the Seventh ACM on
Conference on Data and Application Security and Privacy. ACM, 301–308.

Eugene Ndiaye, Tam Le, Olivier Fercoq, Joseph Salmon, and Ichiro Takeuchi. 2018.
Safe Grid Search with Optimal Complexity. arXiv preprint arXiv:1810.05471 (2018).

Nokia. 2019. Nokia Threat Intelligence Report. Retrieved August, 2019 from
https://onestore.nokia.com/asset/205835?did=d0000000016z&utm_campaign=
threatintelligence18&utm_source=marketo&utm_medium=LandingPage&utm_

content=report&utm_term=awareness
Raymond Paternoster, Robert Brame, Paul Mazerolle, and Alex Piquero. 1998. Using

the correct statistical test for the equality of regression coefficients. Criminology
36, 4 (1998), 859–866.

Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo
Cavallaro. 2019. {TESSERACT}: Eliminating experimental bias in malware classifi-
cation across space and time. In 28th {USENIX} Security Symposium ({USENIX}
Security 19). 729–746.

Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. 1995. Nearest neighbor
queries. In ACM sigmod record, Vol. 24. ACM, 71–79.

S Rasoul Safavian and David Landgrebe. 1991. A survey of decision tree classifier
methodology. IEEE transactions on systems, man, and cybernetics 21, 3 (1991),
660–674.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for few-shot
learning. In Advances in Neural Information Processing Systems. 4077–4087.

Stephen V. Stehman. 1997. Selecting and interpreting measures of thematic classifica-
tion accuracy. Remote Sensing of Environment 62, 1 (1997), 77–89.

Guillermo Suarez-Tangil, Juan E Tapiador, Pedro Peris-Lopez, and Jorge Blasco. 2014.
Dendroid: A text mining approach to analyzing and classifying code structures in
android malware families. Expert Systems with Applications 41, 4 (2014), 1104–1117.

Aixin Sun, Ee-Peng Lim, and Ying Liu. 2009. On strategies for imbalanced text classi-
fication using SVM: A comparative study. Decision Support Systems 48, 1 (2009),
191–201.

Chongbin Tang, Sen Chen, Lingling Fan, Lihua Xu, Yang Liu, Zhushou Tang, and Liang
Dou. 2019. A Large-scale Empirical Study on Industrial Fake Apps. In Proceedings
of the 41st International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP ’10). IEEE Press, 183–192.

Jean-Philippe Vert, Koji Tsuda, and Bernhard Schölkopf. 2004. A primer on kernel
methods. Kernel methods in computational biology 47 (2004), 35–70.

Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic features
for defect prediction. In 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE). IEEE, 297–308.

Wei Wang, Xing Wang, Dawei Feng, Jiqiang Liu, Zhen Han, and Xiangliang Zhang.
2014. Exploring permission-induced risk in android applications for malicious
application detection. IEEE Transactions on Information Forensics and Security 9, 11
(2014), 1869–1882.

Yaqing Wang and Quanming Yao. 2019. Few-shot learning: A survey. arXiv preprint
arXiv:1904.05046 (2019).

Yu-Xiong Wang and Martial Hebert. 2016. Learning to learn: Model regression net-
works for easy small sample learning. In European Conference on Computer Vision.
Springer, 616–634.

FengguoWei, Yuping Li, Sankardas Roy, Xinming Ou, andWu Zhou. 2017. Deep ground
truth analysis of current android malware. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer, 252–276.

Xin Xia, David Lo, Sinno Jialin Pan, Nachiappan Nagappan, and Xinyu Wang. 2016.
Hydra: Massively compositional model for cross-project defect prediction. IEEE
Transactions on software Engineering 42, 10 (2016), 977–998.

Bowen Xu, Deheng Ye, Zhenchang Xing, Xin Xia, Guibin Chen, and Shanping Li.
2016. Predicting semantically linkable knowledge in developer online forums via
convolutional neural network. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ACM, 51–62.

Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. 2014. Droid-sec: deep
learning in android malware detection. In ACM SIGCOMM Computer Communica-
tion Review, Vol. 44. ACM, 371–372.

Sergey Zagoruyko and Nikos Komodakis. 2015. Learning to compare image patches via
convolutional neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 4353–4361.

Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014. Semantics-aware android
malware classification using weighted contextual api dependency graphs. In Pro-
ceedings of the 2014 ACM SIGSAC conference on computer and communications
security. ACM, 1105–1116.

Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning, X Sean
Wang, and Binyu Zang. 2013. Vetting undesirable behaviors in android apps with
permission use analysis. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. ACM, 611–622.

Yajin Zhou and Xuxian Jiang. 2012. Dissecting android malware: Characterization and
evolution. In 2012 IEEE symposium on security and privacy. IEEE, 95–109.

1571

https://keras.io
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2018.pdf
https://onestore.nokia.com/asset/205835?did=d0000000016z&utm_campaign=threatintelligence18&utm_source=marketo&utm_medium=LandingPage&utm_content=report&utm_term=awareness
https://onestore.nokia.com/asset/205835?did=d0000000016z&utm_campaign=threatintelligence18&utm_source=marketo&utm_medium=LandingPage&utm_content=report&utm_term=awareness
https://onestore.nokia.com/asset/205835?did=d0000000016z&utm_campaign=threatintelligence18&utm_source=marketo&utm_medium=LandingPage&utm_content=report&utm_term=awareness

