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ABSTRACT
Very large language models (LLMs), such as GPT-3 and Codex have
achieved state-of-the-art performance on several natural-language
tasks, and show great promise also for code. A particularly exciting
aspect of LLMs is their knack for few-shot and zero-shot learning:
they can learn to perform a task with very few examples. Few-
shotting has particular synergies in software engineering, where
there are a lot of phenomena (identifier names, APIs, terminol-
ogy, coding patterns) that are known to be highly project-specific.
However, project-specific data can be quite limited, especially early
in the history of a project; thus the few-shot learning capacity
of LLMs might be very relevant. In this paper, we investigate the
use few-shot training with the very large GPT (Generative Pre-
trained Transformer) Codex model, and find evidence suggesting
that one can significantly surpass state-of-the-art models for code-
summarization, leveraging project-specific training.
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1 INTRODUCTION
Very large language models (LLMs) are viewed as a revolutionary
advance in natural language processing. Models such as GPT-3 [4],
which have over 150 billion parameters, are trained using a simple,
autoregressive, predict-the-next token regime over enormous cor-
pora. Codex [5], for example is a 12 billion parameters LLM trained
on code. While such models certainly perform very well indeed
at the task of prediction (e.g., for code completion) , they are also
quite good at other tasks, such as generating code from docstrings,
and vice versa, after suitable fine-tuning [5].

One of the most exciting aspects of LLMs is zero, one- or few-shot
training. In this line of work, the LLM is not subject to conven-
tional fine-tuning (as is most typical with BERT, T5, RoBERTA,
etc [6, 15, 17]) using a sizeable number of on-task training exam-
ples (typically in the range of 100 -100,000 examples); rather it is
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given a prefix, comprising just a handful of input-input pairs, and
then is prompted with a query input (sans output). In this (highly
sample-efficient) regime, LLMs are known to perform surprisingly
well. Most remarkably, few-shot training does not require any weight
adjustment whatsoever. Rather, the LLM leverages the information
in the first part of the prompt to condition itself to perform the
task reflected in the few examples. This works because the massive
capacity (billions of parameters!) of the model allows it to condition
its generative behaviour on the given prompt in extremely varied,
subtle & flexible ways. An example two-shot training prompt, for
the task of English-German translation, might be, for example:

The sentence "how are you?" in German

is "wie geht es?". The sentence "See

you later!" in German is "Bis Bald!".

The sentence "How much is that apple?"

in German is<submit>

If prompted with this, when one hits the submit button, GPT3
responds "Wie viel kostet diese Apfel?", which is a good
translation1. Likewise, LLMs are known to be capable of few-shot
learning on a wide range of tasks, including question-answering,
natural language inference, summarization, etc. It should be noted
that few-shot learning is very challenging indeed, and the aptitude
of LLMs to learn to perform different tasks in this regime is quite
phenomenal2.

Few-shot learning has a peculiar and interesting salience for soft-
ware engineering: for dealing with project-specific linguistic phe-
nomena. Most seasoned engineers are very well aware of this: differ-
ent projects leverage different domain-specific concepts, and these
are reflected in identifier naming, API calls, and coding patterns. It’s
been well-known right from the outset that language modeling for
code has to deal with project-specific phenomena [10, 11, 22]. The
sticking point here, however, is that project-specific data, especially
early-on in a project’s history, may be quite limited in volume. This
suggests an exciting synergy with the few-shot learning aptitude
of LLMs, which can make do with just a few samples.

In this short paper, we address three research questions:

(1) Does the few-shot learning capacity of large languagemodels
extend to the task of code summarization?

(2) Can this few-shot learning capacity be extended to same-
project learning on this same task?

(3) How does the performance of LLMs in the above two settings
compare with that of state-of-the-art models?

1Actual output from the GPT3 showcase, obtained from the text-DaVinci-002
model, at https://beta.openai.com/playground
2See https://www.nytimes.com/2022/04/15/magazine/ai-language.html
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2 BACKGROUND AND RELATEDWORK
Code summarization is helpful, because developers spend around
59% of their time comprehending or understanding others’ work
or their own prior works [24]. Good quality comments can ben-
efit the developers by contributing to both the development and
maintenance process [20]. Surprisingly, misaligned and outdated
comments are very common in SE projects. Apart from writing
new comments, automated code summarization could potentially
help update misaligned and outdated comments.

Code summarization bears a strong resemblance to Neural Ma-
chine Translation (NMT) (e.g., translating English to German). In-
spired by NMT, researchers in the SE domain have adopted an
encoder-decoder framework for code summarization tasks. The
earliest work using RNN models [21], and the newest work based
on foundation models [3], all leverage encoder-decoder models.
However, with the advent of very highly parametrized (with >
150 Billion parameters) LLMs, we are slowly moving away from
encoder-decoder models and adopting decoder-only models (like
Codex) for a task like code summarization.

Large language models (including Codex) have been applied to
the code-summarization (sometimes called “Docstring generation”)
task. Fried et al. [8] introduce a large language model, InCoder,
and try zero-shot training on CodeXGLUE Python dataset. They
achieved impressive results but failed to outperform fine-tuned
models like CodeT5 [23], CodeBERT [7], and PLBART [1]. Chen
et al. [5] fine-tuned Codex on code summarization task and pro-
posed a new model Codex-D. However, they used a very small
human eval dataset for Codex-D and didn’t use BLEU-4, which is
recommended by CodeXGLUE benchmark. This is not clear how
Codex-D is performing compared to other pre-trained models. None
of the above works reported the performance of few-shot training
or investigated the effectiveness of same-project few-shot training.

3 METHODOLOGY
We present our approach to summarizing code in this section. We
also discuss the dataset used for evaluation, and some design choices.
Figure 1 presents our simple few-shot-based approach to produce
code summaries using the Codex model. There are four major steps
as follows. In the following, we assume fi , si refers to an indexed
function (code), summary (natural language text) pair

(1) We prepend n functions (cross-project/ same-project), each
followed by a comment, followed by the target function
for which the model is to generate the comment. Thus the
prompt is structured as f1, s1, f2, s2, . . . fn , sn , fq where the
fi , si pairs for i ≤ n constitute the “few shot” training ex-
amples, and the fq refers to the “query" function for which
the model is to generate a summary sq . Each comment has
a starting and ending symbol (i.e., <s> & </s>). We finalize
the input by appending a comment starting symbol (<s>) at
the end of the target function.

(2) After that, we send the prompt to the Codex model.
(3) We receive the responsive output from themodel. The output

may contain additional text after the comment because we
have to fix the output length before processing the input.

(4) Finally, we prepare the target comment using the comment
ending symbol (</s>).

DatasetWe use the CodeXGLUE [16] code summarization bench-
mark. CodeXGLUE is originally adapted from the CodeSearch-
Net [12] dataset. It’s multilingual with data from six different lan-
guages (i.e., Ruby, JavaScript, Java, Go, PHP, Python). The majority
of the foundation models [1, 2, 7, 9, 23] are evaluated on this dataset
for the code summarization task. However, we could not assess the
complete dataset because we only have limited access (20 request-
s/min) to the private beta version of the Codex Model; at our lab, we
did not have the resources to replicate such a large model. However,
we could try to get evidence relevant to our research question; we
randomly chose just 1000 examples from the test set of all six lan-
guages. To properly compare with other foundation models, we also
find out the performance of those models on the same collection of
samples. We randomly chose ten samples from the training set for
few-shot training with Codex. Note that CodeXGLUE is a properly
deduplicated dataset and uses the cross-project splits for training,
testing, and dev set [19].

We also evaluated the Codex model on same-project few-shot
training. Ahmed and Devanbu showed that the performance of
the deep learning models depends on the identifiers for the code
summarization task [2]. Vocabularies of a project are highly local,
and functions from the same projects are likely to share same set
of identifiers [10, 22]. We chose four Python projects and four Java
projects from the test set of CodeXGLUE. To have a fair comparison
with the prior foundation models, we had to restrict to the test
set of CodeXGLUE. After choosing the projects, we retrieved the
creation date for each sample using “git blame –ignore rev”. We
sorted the functions according to the creation date and ensured
that only historical data was used for few-shot training to prevent
data leakage from future samples.
Selecting number of few-shot samplesWeuse the “code-davinci-002”,
the most capable model in the Codex series and can process prompts
up to 4000 tokens. Our access to the private beta version of the
model enables few-shotting (fine-tuning with weight adjustment
on the actual neural model is not yet possible, and is beyond the
scope of this paper). Therefore, our few-shot training was limited
by 4000 tokens. We found that we could safely fit 10-15 sequences
in the prompt and ask the model to generate the comment for us.
We tried 5, 10, and 15 samples for few-shot training for 1000 test
samples from the CodeXGLUE Java code summarization dataset
and achieved 19.76, 21.88, and 21.46 BLEU-4, respectively. We use
10-shot for the rest of this work, because it requires less time apart
from giving the best performance. Also, note that using too much
data for few-shot or fine-tuning may cause catastrophic forgetting
in the model [13]. We also discuss the performance for zero-shot
and one-shot training in Section 4.4.
Design Choices Several parameters need to be fixed to get the output
from Codex. Temperature is one of the crucial parameters. Higher
temperature enables the model to take more risks. Following the
recommendation of OpenAI documentation, we set the temper-
ature to 0 because we aimed for well-defined answers3. We also
set default value 1.0 as Top_p and 50 as max_token count. The
majority of the summaries are less than 50 tokens. However, the
model does continue generating tokens even after completing the
summary. We clipped the summary using the comment ending

3https://beta.openai.com/docs/api-reference/completions/create
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code_1
<s> comment_1 </s>
------------------------
code_10
<s> comment_10 </s>

code_target
<s>

i) Concat (b) after (a)

comment_target </s> 
code_random

LLM/Codex

comment_target

(a)

(b)
ii) Input to the LLM

iii) Output from the LLM

iv) Extract the target comment

Figure 1: Pipeline for generating comment

symbol (</s>). Note that several other parameters can be altered to
generate more creative summaries. We weren’t able to fully explore
hyper-parameter turning due to API access limits.

4 RESULT
We present our performance measurements of cross-project and
same-project few-shot training with LLM model Codex. We will
also discuss how the model performed with zero-shot and one-shot
training.

4.1 Cross-project few-shot
As mentioned earlier, CodeXGLUE is a cross-project dataset. To
show the effectiveness of few-shot training, we randomly chose
10 samples from the CodeXGLUE training set for each language.
We prepended these 10 samples to a chosen (query) sample, from
the test set, and asked the model to complete the resulting prompt.
Following prior works, we use smoothed BLEU-4 [14] as the evalu-
ation metric. We compared our approach with CodeBERT, Graph-
CodeBERT, CodeT5, and PolyGlot versions of the CodeBERT and
GraphCodeBERT models. Table 1 suggests that Codex, few-shotted
for code summarization, can outperform competitive models. We
observedmore than +2 BLEU-4 improvements for JavaScript and Go.
Roy et al. show that BLEU-4 improvements of more than +2 points
are reasonable proxies for human-perceptible preference [18]. This
result suggests that LLMs like Codex are really sample-efficient.
All the baselines are fine-tuned with 24K-251K for each language,
whereas the LLM outperforms all of them with just 10 samples! .

Observation 1. With 10 samples, Codex outperforms all fine-
tuned foundation models CodeT5, CodeBERT, GraphCodeBERT,
Polyglot CodeBERT, and PolyGlotGraphCodeBERT in all six pro-
gramming languages, even though the fine-tuned models are
trained with thousands of data.

4.2 Same-project few-shot
Same-project few-shot training can be beneficial , since projects
tend to follow a distinctive coding and documentation style. In
the previous section, we have already observed that cross-project
few-shot outperformed all the pre-trained models with a significant
margin with only 10 samples. We will replace those 10 cross-project
few-shot training samples with 10 samples from the same project,
(respecting time-series ordering, so as to avoid cross-contamination
between the training and test examples) and observe the perfor-
mance. We believe that even with a few samples, Codex model
will be able to produce significant improvements to the output.
Table 2 shows that we outperform all the models, even the Codex
model with cross-project data for all the projects under considera-
tion. The performance went up from 21.65 BLEU-4 to 24.37 BLEU-4
(12.56% improvement) for the Codex models, which exhibits the
effectiveness of few-shot training.

Observation 2. Same-project few-shot training improves the
Codex model’s performance for all 8 projects.

4.3 Are we getting statistically significant
result?

We performed a one-sided pair-wise Wilcoxon-rank test to see the
impact of few-shot training in a large language model. We compare
the CodeT5 model with Codex in a cross-project few-shot training
setup because CodeT5 is the best-performing model among the pre-
trained models. We compare the cross-project and same-project
codex output in the same-project setup because we are interested in
how much few-shot training can improve the model’s performance.
For cross-project setup, we observe 1%-15% improvement for all
six programming languages (see Table 1). We also found very high
statistically significant improvement for four languages. Though
we failed to find any significant improvement for Python and PHP,
Codex few-shot training still outperforms the traditional fine-tuned
pre-trained models with 10 samples. We found statistically sig-
nificant improvement for 2 projects (Table 2) over cross-project
Codex for same-project training even though we improved for all 8
projects (2% to 46% improvement). However, for both settings, we
observe overall statistically significant improvements.

Observation 3. Thoughwe did not observe statistically significant
results for all programming languages and all projects, we observe
overall statistically significant improvements.

4.4 Zero-shot and one-shot training
Terms like zero-shot and one-shot training are getting popular
with large language models. However, zero-shot is not suitable for
task like code summarization. Codex model works left to right and
predicts the future tokens only. With zero-shot training, it is not
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Language
Models

CodeBERT
PolyGlot
CodeBERT

GraphCodeBERT
PolyGlot

GraphCodeBERT
CodeT5 Codex

Improvement in %
(CodeT5 to Codex)

p-value

Java 18.8 20.22 18.52 19.94 19.78 21.88 10.61% <0.01
Python 17.73 18.19 17.35 18.33 19.98 20.76 3.94% 0.03
Ruby 12.61 14.64 12.6 14.9 15.33 16.95 10.52% <0.01
JS 14.30 16.34 15.21 15.92 15.98 18.42 15.23% <0.01
Go 18.5 19.18 18.71 19.3 19.91 22.65 13.73% <0.01
PHP 25.88 26.46 25.97 26.54 26.32 26.63 1.17% 0.27
Average 17.97 19.17 18.06 19.16 19.55 21.22 8.52% <0.01
p-value is calculated with pairwise 2-sample Wilcoxon Signed rank test between CodeT5 and Codex

Table 1: Comparison to existing models, on CodeXGLUE dataset

Language Project
Models

#of test samples CodeBERT
PolyGlot
CodeBERT

GraphCodeBERT
PolyGlot

GraphCodeBERT
CodeT5

Codex
Cross-project

Codex
(same-project)

Improvement in % Codex
(cross-project to same-project)

p-value

Java

wildfly/wildfly 431 17.56 19.04 17.18 18.41 18.22 19.28 19.65 1.92% 0.03
orientechnologies/orientdb 423 15.7 16.86 16.65 16.42 17.76 20.11 22.34 11.06% 0.17
ngageoint/geopackage-android 260 31.17 31.27 33.27 29.94 29.99 26.97 39.46 46.31% <0.01
RestComm/jain-slee 222 16.07 16.22 15.71 16.21 18 18.91 19.29 2.01% 0.08

Python

apache/airflow 530 17.95 17.61 17.51 17.85 18.85 22.23 23.03 3.60% 0.22
tensorflow/probability 513 17.88 18.29 16.76 18.39 18.61 20.52 22.74 10.82% <0.01
h2oai/h2o-3 254 15.65 15.92 14.44 14.94 17.07 18.98 19.65 3.48% 0.28
chaoss/grimoirelab-perceval 222 26.51 25.77 25.8 27.37 24.61 26.95 28.82 6.94% 0.04

Average 19.81 20.12 19.67 19.94 20.39 21.74 24.37 12.09% <0.01
p-value is calculated by performing pairwise 2 sample Wilcoxon Signed rank test between Codex (cross-project) and Codex (sample-project)

Table 2: Effectiveness of same-project few-shot training for code summarization

possible to direct the model to do anything that it was not trained
to do. For instance, usually, docstring appears before the code, and
Codex is trained on GitHub data. So, the model may be able to
generate code when prompted with docstring, even without seeing
any examples. This is not the case for code summarization, which
has the reverse default ordering. Here, the input to the model is
the code, and docstring is the output. We need a few samples to
teach the Codex to generate docstring after code. However, we did
try both zero-shot and one-shot training with Codex and achieved
only 2.96 and 6.22 BLEU-4 on average; we omit details due to the
convincingly bad performance.

Observation 4. Zero-shot and one-shot training in Codex do not
work for code summarization task.

5 THREATS
Code summarization using Codex poses less direct safety & secu-
rity threats as other problems like code generation. Docstrings or
comments are never executed as part of the program; however, they
could lead to problems if they were to mislead programmers.

There is a risk that our test data has been already seen by the
CodeX during it’s very large-scale pre-training; LLMs are pre-
trained on enormous datasets. The training dataset was unavailable
to us at the time, and so we couldn’t account for this risk. However,
there are a couple of observations that offer suggestive evidence
that the model hasn’t just previously memorized our test data: first,
it’s performance in a zero- or one-shot setting in most cases is

quite abysmal. Second, the performance does smoothly improve, as
expected, in most cases upto around 10 training samples embedded
in the prompt. This suggests that the model’s conditioned gener-
ative ability improves with more training samples; the prior that
the model internally computes and uses to condition its comment
generation (p(comments | code)) is gradually improving with more
training samples, suggesting that it is actually generalizing from
the few-shots, rather that just regurgiating an example it’s seen
before.

6 CONCLUSION
Large language models are getting popular and getting larger every
few months. In this paper, we investigated the effectiveness of few-
shot training for code summarization task and found that it can
significantly outperform a fine-tuned model trained with thousands
of samples with just ten samples. This sample efficiency also opens
the door for using the same project samples, which are known
to share vocabulary and other critical internal properties of the
project. We observed the impact of same-project few-shot training
and found that a few-shot codex in the same-project setting per-
forms better than a cross-project, and the overall improvement is
statistically significant. Applying same-project data is very promis-
ing and feasible because ten samples for a task like summarization
can be generated soon after the development begins. We believe
that same-project few-shot training with LLM models can benefit
other SE tasks also. Finally, code summarization dataset is made
available anonymously at https://doi.org/10.5281/zenodo.6592064.

https://doi.org/10.5281/zenodo.6592064
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