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Abstract—We describe our participation in the tool competition
in the scope of the 2nd International Workshop on Natural
Language-based Software Engineering. We propose a supervised
approach relying on SETFIT, a framework for few-shot learning
and sentence-BERT (SBERT), a variant of BERT for effective
sentence embedding. We experimented with different settings,
achieving the best performance by training and testing the
SETFIT-based model on a subset of data with manually verified
labels (F1-micro = .8321). For the sake of the challenge, we
evaluate the SETFIT model on the challenge test set, achieving
F1-micro = .7767.

I. INTRODUCTION

Software development is a complex and dynamic process
that requires efficient management of issues and bugs. Au-
tomatic classification of issue reports plays a key role in
achieving effective decision-making and prioritization. Follow-
ing the experience of the first edition [1], the tool competition
at NLBSE’23 invites contributions describing systems for
automatic issue report classification. To train and evaluate the
systems, the organizers provide participants with a dataset
including more than 1.4M GitHub issue reports labeled as
either bug, features, question, and documentation.

Early studies on automatic issue classification leveraged
traditional machine learning, achieving accuracy between 77%
and 82% [2]. More recently, researchers started to use deep
learning. Kallis et al. [3], [4] proposed Ticket Tagger, a
classifier based on fastText [5], that leverages the textual
content of an issue title and body. During the first edition of the
tool competition at NLBSE’22 pre-trained language models,
such as BERT [6], emerged as state-of-the-art [7]–[11].

In our contribution to the first edition of the challenge
edition, experimented with fine-tuning of BERT [6], a task-
agnostic pre-trained language model released by Google, and
its variants ALBERT [12] and RoBERTa [13]. All models
outperformed the baseline and we observed the best perfor-
mance with the RoBERTa-based model (F1 = .8591) [7].
The error analysis suggests that one of the main causes of
issue misclassification is the presence of inconsistencies in the
labeling rationale. Indeed, data quality recently emerged as a
crucial issue for the performance of supervised classifiers [14].
Given that the source of the data for the NLBSE’23 [15]
dataset is the same as for the NLBSE’22 [1] dataset, it is
reasonable to assume that this concern also holds for the
projects in the current dataset. As such, in this paper, we
investigate the potential impact of data quality improvement
through manual verification of labels. Thus, we formulate the
following research question:

To what extent does the label consistency impact the per-
formance of supervised issue classification models?

To address our research question, we first improve the
label correctness of a subset of the train and test data.
Then, we experiment with SETFIT an effective methodology
for fine-tuning of transformer-based models using few-shot
learning [16]. Our model based on SETFIT achieves F1 =
.7767 on the full test set and F1 = .8321 on the relabeled one.
The replication material is available on GitHub [17].

II. BACKGROUND AND RELATED WORK

Word embeddings, such as Word2Vec [18], GloVe [19] and
FastText [20] are some of the early approaches to represen-
tation learning in natural language processing (NLP). These
models learn a vector representation for each word in a large
training corpus, thus capturing words’ contextual semantics.
Recent developments in NLP introduced transformer-based
models such as BERT [6], which is pre-trained on a large text
corpus using masked language modeling and next-sentence
prediction objectives. This enables BERT to effectively pro-
duce a sentence-level representation that can be fine-tuned for
a wide range of NLP tasks. BERT and its variants (such as
RoBERTa [13]), achieve state-of-the-art results in several NLP
benchmarks. Recently, other transformer-based models were
introduced to improve sentence representation by minimizing
the distance between semantically similar sentences. Sentence-
BERT (SBERT) is designed to address BERT’s inefficiency in
semantic similarity search and clustering [16], [21]. SBERT
employs a siamese and triplet network architecture to create
semantically rich sentence representations that can be com-
pared using cosine-similarity.

Few-shot learning addresses the limitations posed by fine-
tuning transformer-based language models using small training
sets, thus reducing the need for manual labeling [16]. Among
others, SETFIT (Sentence Transformer Finetuning) is a frame-
work for few-shot fine-tuning of Sentence Transformers [16].

III. METHODOLOGY

The challenge dataset [15] consists of 1.4M issue reports
extracted from GH Archive1 using Google BigQuery2. All
issues included were closed in 2022 (January - September)
and have a non-empty body in English. Each report includes
its id, title, body, author association, and label. The labels are
indicative of the type of issue, with the possible classes bug,
features, question, and documentation. Issues that are labeled

1https://www.gharchive.org/
2https://cloud.google.com/bigquery/
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with synonyms [22], are mapped to one of these four labels.
Issues with multiple labels have been excluded. The dataset is
split into a train (90%) and a test set (10%) through stratified
sampling (see Table I).

TABLE I
DISTRIBUTION OF ISSUES IN THE TRAINING AND TEST SETS

Train set Test set
Bug 670,951 (53%) 74,781 (53%)
Documentation 56,666 (4%) 6,252 (4%)
Feature 472,216 (37%) 52,797 (37%)
Question 76,048 (6%) 8,490 (6%)
Total 1,275,881 142,320

The error analysis we conducted in the scope of our previous
work presented at NLBSE’22 [7] reveals that one of the
main causes for misclassification was the presence of noisy
labels. One of the reasons for such noise was the variability
in labeling rationale among different projects. Another source
of noise is the inherent difficulty in distinguishing between
bugs and questions, as both often contain error traces and
an explanation of how to reproduce the error. The distinction
between bugs and questions mostly depends on the behavior of
the code, i.e. issues reporting errors caused by misuse of the
library are typically labeled as questions, which distinguish
them from bug reports. However, this distinction is hard to
capture based on the textual content only. Often, bugs and
questions contain suggestions on how to fix the problem,
which might lead to inconsistent labeling of bugs as feature
requests or vice versa.

The use of noisy data for training is a significant concern,
as it may result in a lack of reliability and effectiveness in
the model, thus leading to inaccurate results [14], [23], [24].
To mitigate the effects of label noise, further manual analysis
and quality checks are necessary to ensure the accuracy and
reliability of the labels in the dataset [14]. To this aim, we
decide to perform a manual check of the label quality. Given
the large number of issues in the NLBSE’23 dataset, this may
be a resource-intensive task. Nevertheless, it is important to
consider the potential benefits of a more accurate and reliable
dataset, such as improved model performance and reduced risk
of false predictions [14].

To balance the costs and benefits, we decided to adopt a
more focused approach. We randomly sampled 400 instances
from the dataset, 200 from the training set and 200 from the
test set. Both sets are balanced, having each 50 examples
per class. This smaller, hand-labeled dataset serves as a gold
standard for training and evaluating a few-shot learner. The
distribution of the dataset before and after the manual labeling
is depicted in Table II. By leveraging transfer learning, our
goal is to understand if a few-shot learner is able to effectively
generalize the hand-labeled examples to the entire dataset. The
annotation procedure for the dataset involved the following
steps. First, three annotators independently labeled each issue
based on the textual information only (title and body of the
issue). Each issue report was assigned to two of the annotators.
We observed a Cohen κ = 0.739, wich corresponds to a sub-

stantial interrater agreement [25]. Then, the three annotators
discussed and resolved the cases of disagreement during a joint
plenary meeting. During this step, we discarded 29 (7.25%
of the labeling set) cases for which it was not possible to
reach a consensus, i.e. it was not possible to understand the
intention of the issue author could not be interpreted due
to insufficient/non-informative text, empty issue templates,
etc. This procedure ensured the reliability and consistency of
the annotations. The manually annotated sample is publicily
available [26].

TABLE II
DISTRIBUTION OF LABELS IN THE EXTRACTED SAMPLES

GitHub labeling Hand labeling
Label Train set Test set Train set Test set
Bug 50 25% 50 25% 47 24% 53 27%
Documentation 50 25% 50 25% 33 17% 32 16%
Feature 50 25% 50 25% 60 30% 55 28%
Question 50 25% 50 25% 44 22% 47 24%
Discarded – – – – 16 8% 13 7%
Total 200 200 200 200

We use this set to train the model submitted for the
challenge. As a baseline, the organizers provided the script for
training a RoBERTa-based model. To enable a fair comparison,
both the models, RoBERTa and SETFIT, are trained using
the same preprocessing. As a first pre-processing step, non-
textual items, such as images, links, and code snippets, were
identified and replaced with tokens (e.g. <img>for images)
in the dataset. Subsequently, a text normalization step was
performed using the ekphrasis Text Pre-Processor 3 which
effectively identified and replaced items such as URLs, email
addresses, symbols, phone numbers, mentions, time, date, and
numbers with specific tokens.

For the RoBERTa model, we use the RoBERTa tokenizer
and then perform padding or truncating to represent the doc-
uments with 512 tokens. For the SETFIT model, we used all-
mpnet-base-v2, one of the top performing pre-trained model
for embeddings, according to the Sentence Transformers doc-
umentation4. This model has an input size of 384 tokens,
which enables the full representation of more than 90% of
the issues [15].

IV. RESULTS AND DISCUSSION

In Table III, we report the results obtained by training
the SETFIT classifier on the hand-labeled gold standard and
evaluated on both the hand-labeled test set (a), and on the full
test set distributed for the challenge (c). For a fair comparison,
we compare the SETFIT model with the performance obtained
by RoBERTa on the same test set, when trained on the
hand-labeled gold standard set (b1) and on the full train set
distributed by the organizers (b2). The challenge baseline is
reported in row (d) of the table. Finally, the perfomance of
SETFIT model submitted to the challenge is reported in Italic
in the table (model c). The SETFIT model is designed to

3https://github.com/cbaziotis/ekphrasis
4https://www.sbert.net/docs/pretrained models.html
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TABLE III
PERFORMANCE OF THE SETFIT MODEL AND COMPARISON WITH THE ROBERTA BASELINE APPROACH. THE PERFORMANCE OF THE MODEL

SUBMITTED TO THE CHALLENGE IS REPORTED IN Italic. IN BOLD, WE HIGHLIGHT THE BEST PERFORMANCE OBTAINED WITH SETFIT.

Model Train Test F1-micro
(a) SETFIT Sampled Manual labels Sampled Manual labels 0.8321

(b1) RoBERTa Sampled Manual labels Sampled Manual labels 0.4348
(b2) RoBERTa Full GitHub labels Sampled Manual labels 0.8182
(c) SETFIT Sampled Manual labels Full GitHub labeling 0.7767
(d) RoBERTa (baseline) Full GitHub labels Full GitHub labels 0.8890

TABLE IV
PERFORMANCE BY CLASS FOR THE ROBERTA BASELINE ON THE FULL CHALLENGE DATASET AND THE SETFIT MODELS TRAINED ON THE MANUALLY

LABELED GOLD STANDARD.

RoBERTa baseline SETFIT SETFIT
Train and test: full dataset Train: manual gold standard Train and test on the

Test: full challenge test set manual gold standard
Label Precision Recall F1 % Supp Precision Recall F1 % Supp Precision Recall F1 % Supp
Bug 0.9120 0.9360 0.9240 53 0.9151 0.7894 0.8476 53 0.8723 0.8472 0.8590 28
Documentation 0.7480 0.6920 0.7190 4 0.4422 0.5715 0.4986 4 0.9039 0.6594 0.7616 17
Feature 0.8960 0.8910 0.8930 37 0.8049 0.8253 0.8149 37 0.7494 0.9182 0.8251 30
Question 0.7010 0.6050 0.6490 6 0.3518 0.6458 0.4554 6 0.8754 0.8319 0.8528 25
Micro average 0.8890 0.8890 0.8890 0.7846 0.7846 0.7846 0.8321 0.8321 0.8321
Macro average 0.8140 0.7810 0.7960 0.6285 0.7080 0.6542 0.8502 0.8142 0.8246

TABLE V
AVERAGE TRAIN AND INFERENCE TIME COMPARISON OVER TEN RUNS

Task RoBERTa SETFIT GPU
Train (HH:MM:SS) 12:24:38 00:03:11 Nvidia A100 40GBInference (s) 0.04 0.02

learn from a few examples, while the RoBERTa baseline is
trained on the full set. Other than comparing the performance,
in Table V we report the overall training time and the inference
time for the single issue report during the classification.

The SETFIT model trained on the manually labeled gold
standard achieves a F1-micro = .7767 (see model (c) in
Table III). The RoBERTa model still represents the state-
of-the-art (F1-micro = .8890) when large training sets are
available (see baseline model (d) in Table III). However, when
a reduced training set is available, the SETFIT model (model
(a), F1-micro = .8321) largely outperforms RoBERTA (model,
(b1) with F1-micro = .4348). It is important to note that in,
both, settings (a) and (b1) the label consistency between the
train and test set is ensured by the manual labeling.

In Table IV, we report the class-based performance, as well
as the F1 macro-average. In fact, the ability of a classifier
to behave well also on categories with few positive training
instances is emphasized by macro-averaging and much less
so by micro-averaging [27]. Please, note that the performance
of the SETFIT model trained and tested on the manual gold
standard is not directly comparable with the first two models
in Table IV, as they are evaluated on the full test set. Never-
theless, these results provide a better insight into the models’
behavior. The SETFIT model achieves a better F1-macro when
trained on the manually annotated gold standard, for which we
have a more balanced class distribution. As a consequence,
this model also achieves the best performance for question
and documentation classes, which are underrepresented in the
full dataset.

This evidence also triggers a question regarding the best

practice in absence of training data. The setting (b2) in
Table III operationalizes such a scenario, which may occur
in real-world applications, i.e. a test set from a given project
is available for assessing the performance of ’off-the-shelf’
state-of-the-art tools. In this setting, we simulate this situation
by training the RoBERTa model on the entire training set with
the GitHub labels and testing it on the manually annotated test
set. The performance is lower (F1-micro = .8182) compared
to the SETFIT model trained on the manually annotated train
set (F1-micro = .8321). For this reason, models trained on
crowd-sourced data may perform well on the test set when it
is drawn from the same source and thus shares the same label
rationale of the train set (model (d) in Table III). Conversely,
a drop in performance can be observed when the same model
is tested on a subset including manually validated labels. This
highlights the importance of considering the quality of the
training data when evaluating models. Overall, our results
suggest that with small but high-quality datasets a good
classification performance can be achieved using the few-shot
learning approach implemented by SETFIT.

V. CONCLUSION

We investigated the impact of data quality improvement
through manual verification of labels on issue classification
performance. We trained and evaluated a model based on
SETFIT using a subset of manually verified data. While not
outperforming the RoBERTa baseline on the full test set, the
model achieves better performance when trained and tested on
data for which label consistency was manually verified. This
result supports the idea that a smaller, hand-labeled dataset
can be more effective than a larger, noisy dataset, provided
that approaches optimized for supervised learning with small
training data are used. The proposed approach can be used
to effectively fine-tune issue classifiers for small projects
with a limited amount of training data. In future work, we
plan to experiment with other techniques based on few-shot
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learning also leveraging domain-specific sentence embeddings
that might better capture the contextual semantics of words.

ACKNOWLEDGMENTS

The computational work has been executed on the IT re-
sources made available by two projects, ReCaS and PRISMA,
funded by MIUR under the program BPON R&C 2007-2013.

REFERENCES

[1] R. Kallis, O. Chaparro, A. Di Sorbo, and S. Panichella,
“Nlbse’22 tool competition,” in Proceedings of The 1st
Intl. Workshop on Natural Language-based Software
Engineering (NLBSE’22), 2022.

[2] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and
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