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Abstract—Flaky tests are tests that yield different outcomes
when run on the same version of a program. This non-
deterministic behaviour plagues continuous integration with false
signals, wasting developers’ time and reducing their trust in
test suites. Studies highlighted the importance of keeping tests
flakiness-free. Recently, the research community has been push-
ing towards the detection of flaky tests by suggesting many static
and dynamic approaches. While promising, those approaches
mainly focus on classifying tests as flaky or not and, even
when high performances are reported, it remains challenging
to understand the cause of flakiness. This part is crucial for
researchers and developers that aim to fix it. To help with the
comprehension of a given flaky test, we propose FlakyCat, the
first approach to classify flaky tests based on their root cause
category. FlakyCat relies on CodeBERT for code representation
and leverages Siamese networks to train a multi-class classifier.
We train and evaluate FlakyCat on a set of 451 flaky tests
collected from open-source Java projects. Our evaluation shows
that FlakyCat categorises flaky tests accurately, with an F1 score
of 73%. Furthermore, we investigate the performance of our
approach for each category, revealing that Async waits, Unordered
collections and Time-related flaky tests are accurately classified,
while Concurrency-related flaky tests are more challenging to
predict. Finally, to facilitate the comprehension of FlakyCat’s
predictions, we present a new technique for CodeBERT-based
model interpretability that highlights code statements influencing
the categorization.

Index Terms—Software Testing, Flaky Tests, CodeBERT, Few-
Shot learning, Siamese Networks.

I. INTRODUCTION

Continuous Integration (CI) plays a key role in nowadays

software development life cycle [1], [2]. CI ensures the quick

application of changes to a main code base by automatically

running a variety of tasks. Those changes are responsible for

building the program and its dependencies, performing checks

(e.g., static analysis), and running test suites to maintain

code integrity and correctness. An important assumption for

practitioners is that tasks are deterministic, i.e., regardless of

the execution’s context of a same task, results need to remain

similar.

Unfortunately, in practice, this is not always the case. Pre-

vious research has identified test flakiness as one of the main

issues in the application of automated software testing [3]–[5].

A flaky test is a test that passes and fails when executed on

the same version of a program. Flakiness hinders CI cycles

and prevents automatic builds due to false signals, resulting

in undesirable delays. Furthermore, surveys [6]–[8] show that

flakiness affects developers’ productivity, as they spend a

considerable time and effort investigating the nature and causes

of flaky tests.

To alleviate this issue, researchers have proposed tools

that help detect flaky tests. In particular, IDFlakies [9] and

Shaker [10] detect flakiness in test suites by running tests

in different setups. However, rerunning tests, especially for

a large number of times, is resource-intensive and might not

be a scalable solution. For this reason, researchers recently

suggested alternative approaches to detect flaky tests based on

features that do not require any test execution [4], [11]–[13].

Although promising, these approaches mainly focus on classi-

fying tests as flaky or not without any additional explanation.

Unfortunately, the absence of additional information prevents

a proper comprehension of flaky failure causes. Hence, further

investigation is required to understand the nature of flakiness

and identify the culprit code elements that need to be fixed [7].

Another important line of research in the area regards

automated approaches that aim at helping to locate the root

causes and suggest potential flakiness fixes [14]–[16]. How-

ever, research on automatically fixing flakiness is still at an

early stage: tools often focus on one category of flakiness

and with few examples. For instance, iFixFlakies [17] and

ODRepair [18] focus only on dealing with test order dependen-

cies, which is one of the main causes of test flakiness. Flex [19]

automatically fixes flakiness due to algorithmic randomness in

machine learning algorithms.

We believe that both developers and researchers would

benefit from additional information that could assist them in

gaining a better understanding of flaky tests, once they have

been detected. Therefore, we propose FlakyCat, a learning-
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based flakiness categorization approach that identifies the key

reason/category of the test failures.

One limitation of previous work, relying on supervised

learning, regards the need for large volumes of available data.

Unfortunately, debugged flaky test data is scarce, inhibiting the

application of learning-based methods. To deal with this issue,

we leverage the Few-Shot learning capabilities of Siamese net-

works, which we combine with the CodeBERT representations

to learn flakiness categories from a limited set of data (flaky

tests).

To evaluate FlakyCat, we gather a set of 451 flaky tests

annotated with their category of flakiness issued from previous

studies and projects that we mined from GitHub.

Our empirical evaluation aims at answering the following

research questions:

• RQ1: How effective is FlakyCat compared to approaches

based on other combinations of test representation and

classifier?

Findings: Our results show that FlakyCat is capable of

predicting flakiness categories with an F1 score of 73%,

outperforming classifiers based on traditional supervised

machine learning.

• RQ2: How effective is FlakyCat at predicting each of

the considered flakiness categories?

Findings: FlakyCat classifies accurately flaky tests re-

lated to Async waits, Test order dependency, Unordered
collection, and Time, with the best F1 score of 81% for

the Async waits category. However, the approach shows

difficulty in classifying concurrency-related flaky tests

(an F1 score of 39%), since these cases are related to

the interaction of threads and processes and are easily

confused with Asynchronous waits.

• RQ3: How do statements of the test code influence the

predictions of FlakyCat?

Findings: We found that some statement types are spe-

cific to certain flakiness categories. This is the case for

assert statements in Unordered collections and statements

using date or time for the Time category. We also found

that some flaky categories have similar statement types

like the presence of thread usages in both Async waits
and Concurrency categories.

In summary, our contributions can be summarized as fol-

lows:

• Dataset We collected 451 flaky tests alongside their

categories.

• Model We present FlakyCat, a new approach using Few-

Shot Learning and CodeBERT to classify flaky tests

based on their flakiness category.

• Interpretability We introduce a novel technique to ex-

plain what information is learnt by models using Code-

BERT as code representation.

To enable the reproducibility of our work, we make the

dataset used to evaluate FlakyCat and the scripts publicly

available in our replication package 1.

1https://github.com/Amal-AK/FLAKYCAT

The paper is organized as followed: Related works are

presented in Section II. Section III presents the designed

implementation of FlakyCat. Section IV introduces our inter-

pretability technique. Section V describes how we collected

our dataset and evaluated our study. Section VI presents the

results of our study. We further discuss different use cases

in Section VII. Finally, Section VIII discusses threats to the

validity of this study.

II. RELATED WORK

Recently, practitioners from the industry reported struggling

with flakiness and highlighted the need to find solutions to

the problem [3], [4], [20]–[23]. Consequently, researchers

from academia started to draw their attention to the matter.

Luo et al. presented the first empirical study to understand

and categorize the root causes of flakiness, they analyzed

201 flaky tests and identified 10 root causes of flakiness,

the top ones being Asynchronous waits, concurrency, and test

order dependency. Using the same taxonomy defined by Luo

[24], Eck et al. [25] classified 200 flaky tests and identified

four new causes of flakiness. Over the years, several surveys

were carried on to identify the sources, impacts and existing

strategies to mitigate flakiness by interrogating developers

and practitioners [6]–[8], [26]. Parry et al. presented the

state of the art of academic research in another survey [27].

Researchers presented different tools and approaches to detect

flaky tests in a more efficient way. Notably, DeFlaker [28],

IDFlakies [9], Shaker [10] and NonDex [29] attempt to facili-

tate the detection of flaky tests compared to exhaustive reruns.

Because the cost of running tests is viewed as expensive,

researchers also sought to suggest static alternatives for the

detection. Different approaches relying on machine learning

were introduced. Pinto et al. [30] and following replication

studies [31], [32] presented a vocabulary-based model using

elements from the test code to classify tests as flaky or

not. Others investigated the use of test smells [13] and code

metrics [33] for predicting flaky tests. Trying to outperform

the performances of existing approaches, others relied on a

mix of static and dynamic features, like FlakeFlagger [34]

or Flake16 [35]. Fixing flakiness is also an aspect that has

recently been investigated. Shi et al. introduced iFixFlakies

[17] to fix order-dependent flaky tests. At Google, Ziftci et
al. suggested using coverage differences, between passing

and failing executions of flaky tests to guide developers to

understand the underlying problem. Coverage information is

also used by FlakyLoc [16], which leverages spectrum-based

fault localization to locate the root cause of flakiness in web

apps. Logs are also frequently considered to be a useful source

of information in understanding root causes of flakiness [15].

Closer to our work, Flakify [36] used CodeBERT [37] as a

pre-trained language-based model for their predictor but their

goal is to classify tests as flaky or not. To our knowledge, we

are the first to focus on predicting the category of flakiness

for each test. Few-Shot Learning is widely used in computer

vision [38]. In software engineering though, fewer studies used

this approach for their task. Notably, studies suggested using
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this model for vulnerability detection [39] and code clone

detection [40], but none were carried out for flakiness. About

pre-trained language models, Wan et al. [41] investigated their

ability to capture the syntax structure of source code and report

that they are efficient for code processing tasks.

III. FLAKYCAT

Fig. 1. An overview of FlakyCat, which combines the use of the pre-trained
model CodeBERT, and Few Shot Learning based on the Siamese network.

In this section, we present the design and implementation

of our approach. Figure 1 presents an overview of the main

steps of FlakyCat, code transformation and classification.

A. Step 1: Flaky test transformation

1) Scope: We rely on the test code to assign flaky tests

to different categories. Previous studies showed that flakiness

finds its root causes in the test in more than 70% of the

cases [24], [42]. Hence, focusing on the test code allows us

to capture the nature of flakiness while minimizing the overall

cost of FlakyCat. Indeed, considering the code under test

would require running the tests and collecting the coverage,

which entails additional requirements and costs.

2) Flaky test vectorization: In order to perform a source

code classification task, we first need to transform the code

into a suitable representation that will be fed to the classifi-

cation model. Among previous studies predicting flaky tests

statically, two main approaches were used to transform code

into vectors: using test smells [13], [34] and using code

vocabulary [12], [31], [32]. Both approaches seem promising,

as different studies report high-performance models. As their

encoding enables flaky test prediction, we believe they could

also be used for flakiness category prediction, and we compare

them with our approach.

Recently, code embeddings from pre-trained language mod-

els were also considered for source code representation [36],

[43]. Pre-trained language models allow the encoding of code

semantics and are intended for general-purpose tasks such

as code completion, code search, and code summarization.

Considering these benefits, we use the pre-trained language

model CodeBERT [44] to generate source code embeddings.

CodeBERT can learn the syntax and semantics of the code and

doesn’t require any predefined features [41]. Considering this

aspect, we decide to rely on the CodeBERT test representation.

CodeBERT has been developed with a multi-layer trans-

former architecture [45] and trained on over six million pieces

of code involving six programming languages (Java, Python,

JavaScript, PHP, Ruby, and Go).

To get the code representation using CodeBERT model, we

first filter out extra spaces such as line breaks and tabs from

the source code. In our case, we use each test method’s source

code as individual sequences. We then tokenise sequences by

converting each token into IDs. Each sequence is passed to

the CodeBERT model, which returns a vector representation.

Figure 2 illustrates this process.

Next, we explain the inputs and outputs of CodeBERT.
a) Inputs: CodeBERT is able to process both source code

and natural language, e.g., comments and documentation. In

our case, we did not exploit the possibility of using comments

as the input length of CodeBERT is limited. Furthermore,

comments can add noise since they represent unstructured

text, possibly written by different developers, so we decided

to solely rely on the code semantics. Hence, the given input

to CodeBERT only considers code tokens, surrounded by two

special tokens for boundaries. This is represented as follows:

[CLS], c1, c2, ..., cm, [SEP ].

Where Ci is a sequence of code tokens, the special token [SEP]

indicates the end of the sequence, and [CLS] is a special

token placed in the beginning, whose final representation is

considered as the representation of the whole sequence which

we use for classification.
b) Outputs: CodeBERT output includes two representa-

tions. The first one is the context matrix where each token

is represented by a vector, and the second one is the CLS

representation, having a size of 768, which is an aggregation

of the context matrix and represents the whole sequence. For

the purpose of FlakyCat, we are interested in the CLS vector

that represents the complete test code.

Fig. 2. The process of converting the source code of each test case to a
vector using CodeBERT, going through tokenization, then converting to IDs
and applying the CodeBERT model to get the representation (CLS vector). Ǵ
represent spaces, < s > used for CLS, and < /s > for SEP.

B. Step 2: Flaky test categorization

1) Classification process: Unlike traditional machine learn-

ing classifiers that attempt to learn how to match an input x to

a probability y by training the model in a large training dataset

and then generalizing to unseen examples, Few-Shot Learning

(FSL) classifiers learn what makes the elements similar or
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belonging to the same class from only a few data. Facing the

scarcity of data on flaky tests, selecting an FSL classifier seems

then to be a promising choice.
In FSL, we call the item we want to classify a query,

and the support set is a small set of data containing few

examples for each class used to help the model to make

classifications based on similarity as shown in Figure 1. To

classify flaky tests according to their flakiness category, we

compute the similarity between the query and all examples

of each flakiness category in our Support Set and assign the

label having the maximum similarity with the query. This

classification is obviously performed in a space where all

elements of the same class are similar or close to each other.

This is achieved by a model called Siamese network. Its task

is to transform the data and project it into a space where all

the elements of a same class are close to each other, and then

to classify the elements by computing their similarity.
The Siamese network has knowledge of the similarity of

elements of the same class. It processes two vectors in input

and applies transformations that allow minimizing the distance

between the two vectors if they share similar characteristics.

Figure 3 shows an example of the visualization of flaky

test vectors before and after the Siamese network is applied.

Since CodeBERT has no knowledge of the characteristics of

flaky tests and only generates a general representation of the

source code, the vectors produced are all similar. However, the

Siamese networks learn which characteristics in these vectors

are shared by tests of the same class, and thus allow to project

vectors into a space that groups tests of the same flakiness

category. After this step, it becomes possible to classify them

using a similarity computation.

Fig. 3. Visualization of our data before and after training of the Siamese
network with the triplet loss, which brings together the elements of the same
class.

2) Model training: Siamese networks have two identical

sub-networks, each sub-network processes the input vector and

performs transformations. Both sub-networks are trained by

calculating the similarity between the two inputs and using

the similarity difference as a loss function. Accordingly, the

weights are adjusted to have a high similarity if the inputs

belong to the same class. For the architecture of the sub-

networks, we used a dense layer of 512 neurons and a

normalization layer as shown in Figure 1. We also performed

a linear transformation to keep relations learnt by CodeBERT

using the attention mechanism introduced in the transformer

architecture [46]. This model is trained using a Triplet Loss

function, based on the calculation of similarity difference.

Let the Anchor A be the reference input (it can be any

input), the positive example P is an input that has the same

class as the Anchor, the negative example N is an input

that has a different class than the Anchor, s() is the cosine

similarity function, and m is a fixed margin. The idea behind

the Triplet Loss function is that we maximize the similarity

between A and P , and minimize the similarity between A
and N , so ideally s(A,P ) is large and s(A,N) is small. The

formula for this loss function is:

Loss = max(s(A,N)− s(A,P ) +m, 0)

m is an additional margin as we do not want s(A,P ) to be

very close to s(A,N), which would lead to a zero loss.

To train the Siamese network with the triplet loss, we give

as input batches of pairs with the same classes, and any other

pair of a different class can be used as a negative example.

We select the closest negative example to the anchor, such

as s(A,N) � s(A,P ), which generates the largest loss and

constitutes a challenge for model learning.

IV. INTERPRETABILITY TECHNIQUE

Model interpretability refers to one’s ability to interpret the

decisions, recommendations, or in our case the predictions,

of a model. Interpretability is a crucial step to increase trust

in using a machine learning model. Indeed, it allows model

creators to investigate potential biases in the learning processes

and better assess the overall performance of their models.

On top of that, providing developers with information about

how the model came to its prediction can enhance the model

adoption [47].

Flakiness prediction approaches often relied on Information

Gain to explain what features in the model appeared to be the

most useful [13], [30], [34]. In the case of tree-based models,

the reported information gain is given by the Gini importance

(also known as Mean Decrease in Impurity) [48]. Parry et
al. [35] used SHapley Additive explanations (SHAP), which

is another popular technique for model interpretability [49].

As FlakyCat uses the CodeBERT representation of tests as

input, using the previously mentioned techniques would not

give understandable features. To our knowledge, there are no

existing techniques used for CodeBERT-based model inter-

pretability. Thus, we introduce a novel approach to better un-

derstand the decisions of CodeBERT-based models. Following

the main motivation of helping developers better understand

flaky tests once detected, our goal with this interpretability

technique is to arm FlakyCat users with a more fine-grained

explanation for the model’s decision.

Our technique is inspired by delta debugging algorithms.

Delta debugging is used to minimize failure-inducing inputs

to a smaller size that still induces the same failure [50]. In our

case, we are interested in the particular code statements linked

with the most influential information for the model’s decision.
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To identify them, we proceed with the following: We classify

all the original test cases and save their similarity scores. We

create new versions of each test. Each version is a copy of the

original test minus one statement that was removed. Next, we

feed the new versions to FlakyCat. Among all new versions

for one test, we keep the one for which the similarity score

endured the biggest drop compared to the original prediction

score. We consider the statement removed in this version as

the most influential one.

V. EVALUATION

In this section, we explain our evaluation setting for Flaky-

Cat. First, we describe our data curation process, then, we

present our approach for answering each of the three research

questions.

A. Data curation

1) Collection: For our study, we had to collect a set of

flaky tests containing their source code and their flakiness

category. We focused our collection efforts on one program-

ming language, as training a classifier using code and tokens

from different programming languages is more challenging.

For the language choice, we opted for Java, which is the

most common language in previous flakiness studies (and thus

datasets). To increase the amount of data used in this study,

we also collected a new set of flaky tests mined from GitHub

that we classified manually.

TABLE I
DATA FILTERING PERFORMED ON THE DIFFERENT DATASETS USED IN THIS

STUDY. COLLECTED REPRESENTS THE NEW DATASET WE RETRIEVED.

Filters Datasets
[24] [51] [52] [17] Collected

Inspected commits 201 170 40 101 270
Commit not found 12 12 4 3 3
Duplicated commit 0 2 0 0 3

Open commit 0 0 0 33 0
Flaky test not found 45 21 13 0 42

Configuration problems 3 8 0 0 0
Not Java 15 5 0 0 8

Category hard to classify 40 57 4 0 22
Considered commits 86 65 19 65 192
Total of extracted tests 109 65 20 65 192

a) Existing datasets: There is no large public dataset of

flaky tests labelled according to their category of flakiness.

Most of the existing studies, such as FlakeFlagger [34] and

DeFlaker [53], are limited to list detected flaky tests which

are later used for binary classification. Regarding the data

classified into flakiness categories defined by Luo et al. [24]

and Eck et al. [25], there is only limited data available in

previous empirical studies about flakiness. We retrieved tests

from the empirical study of flaky tests across programming

languages of Costa et al. [51] and from a recent study about

pinpointing causes of flakiness by Habchi et al. [52]. We also

retrieved the flaky tests from iFixFlakies [17] as Test order
dependency is a flakiness category that received a large interest

in the community [9], [18], [54], [55].

We gathered a total of 512 commits/pull requests from the

existing datasets we could access, referenced in Table I.

b) New dataset: To expand existing datasets, we explore

GitHub projects and search for flakiness-fixing commits for

which developers explained the reason (i.e., category) of

flakiness.

In this search, we use flakiness-related keywords such as

Flaky and Intermit in the commit messages. To ensure that

the commit refers to a flakiness category, we further filter

commits by specific keywords related to each category: thread,
concurrence, deadlock, race condition for Concurrency, time,
hour, seconds, date format, local date for Time, port, server,
network, http, socket for Network and rand for Random. After

the search, we rely on the developer’s explanation in the

commit message and on the provided fix to classify tests into

the different flakiness categories listed in the literature. This

collection allowed us to obtain 270 commits fixing flaky tests

to be classified manually.

2) Filtering: The previous step allowed us to collect a total

of 782 categorized commits/issues. In this step, we filter out

commits and data that are not adequate for our study. We filter

out commits hard to classify, duplicated ones, and those where

flaky tests are not written in java. Costa et al. [51] classified

issues, and Luo et al. [24] classified old SVN revisions. In

some cases, the corresponding commit could no longer be

found in the projects. Some data points were missing necessary

attributes, such as the name of the flaky test. Particularly,

in commits where the fix is in the production code or in a

configuration file, and the test name of the involved flaky

test is not indicated in the commit message, we were not

able to identify the flaky test, so we filtered them out. The

number of tests extracted for each dataset is shown in Table

I. The considered commits row accounts for commits where

all information needed was present i.e., the test name, source

and category of flakiness. Note that the number of considered

commits and extracted tests vary in some cases as developers

sometimes addressed more than one flaky test per commit. We

obtained a total of 259 flaky tests after filtering the existing

datasets. For the data we collected ourselves, we successfully

extracted 192 test cases. To ensure the correctness of our

manual classification and filtering, the first two authors of

the paper performed a double-check on the newly collected

dataset.

3) Processing: After filling in all the necessary attributes:

the test case name, flakiness category, test file name, and

project URL, we download the code files and extract test

methods using the spoon library2. At this stage, all comments

have been deleted from the source code to restrict CodeBERT

to code statements.

4) Final dataset: The final dataset contains 451 flaky tests

distributed over 13 flakiness categories. Table II illustrates this

distribution.

The collected flaky tests are not distributed evenly across

categories of flakiness. Just as shown in past empirical stud-

2https://github.com/INRIA/spoon
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ies [24], [56], some categories, such as Async waits, are more

prevalent than others. Our approach uses FSL to learn from

limited datasets. Still, it requires a certain amount of examples

to learn common patterns from each category. We decided

to have at least 30 tests in a category to consider it. This

number is commonly accepted by statisticians as a threshold

to have representativeness [57], since learning from very

few examples is not feasible. In our dataset, some flakiness

categories contain no more than 5 flaky tests. We were not

able to gather more data for those non-prevalent categories and

thus decided to focus on five of the most common flakiness

categories, highlighted in grey in the table: Async waits, Test
order dependency, Unordered collections, Concurrency, and

Time.

5) Data augmentation: Facing the challenge of learning

from few data, we over-sampled our training set similarly to

SMOTE [58] by applying elementary perturbations. In the

same way, as we increase the imagery data by rotating and

resizing, for the source code, we generate variants of our tests

by mutating only the code elements that have no influence

on flakiness. This includes variable names, constants such as

strings, test method names, and by adding declarations of

unused variables. In this way, the model will learn useful

code elements instead of learning from variable names and

strings. We used the Spoon library for the detection of these

elements, and we replaced them with randomly generated

significant words. As a result, the total number of tests after

data augmentation is 964.

TABLE II
FINAL DATASET. THE HIGHLIGHTED ROWS ARE THE DATA USED TO TRAIN

AND TEST THE MODEL. THE ORIGINAL DATA REFERS TO THE DATA WE

COLLECTED, SHORT DATA ARE TESTS WITH LESS THAN 512 TOKENS, AND

THE AUGMENTED DATA ARE THE DATA WE OBTAINED AFTER

AUGMENTATION.

Class Data
Original Short Augmented

Async waits 125 97 300
Test order dependency 103 100 284
Unordered collections 51 48 146

Concurrency 48 40 124
Time 42 38 110

Network 31 25 /
Randomness 17 14 /

Test case timeout 14 9 /
Resource leak 10 7 /

Platform dependency 2 2 /
Too restrictive range 3 2 /

I/O 2 2 /
Floating point operations 3 1 /

TOTAL 451 385 964

B. Experimental design

1) Baseline:
To the best of our knowledge, we are the first to introduce an

automatic classification of flaky tests according to their cate-

gory. However, to get a better appreciation of the performance

of the solution we propose in this paper, we seek to compare

FlakyCat with test representations commonly used by flaky test

detection approaches. Our intuition is that test representations

giving good performance in binary classification (i.e., detect-

ing flaky tests and non-flaky tests) have a good chance to be

helpful for the classification of tests according to their category

of flakiness. Thus, we use the following representations for

our multi-classification task: the vocabulary-based approach

[12] which is a keyword-based approach, and the smell-

based approach [13] which exploits the correlation between

test smells and test flakiness. Our overall motivation is to

determine whether it is possible to make this classification

based on limited data and to know which combination of

classifier and code representation delivers the best results.

For the classification based on test smells, we use the 21

smells detected by tsDetect [59], to generate vectors indicating

the presence of each smell detected by the tool, in the

same way as in the study of Camara et al. [13]. As for

the vocabulary-based classification, we use token occurrence

vectors, as in the article by Pinto et al. [12]. We tokenize the

code and apply standard pre-processing like stemming, then

calculate occurrences of each token.

In addition to various test representations, we compare

our FSL-based approach with traditional classifiers from the

Scikit-learn library [60] used by previous studies on flakiness

prediction [12], [13], [32]: Random Forest (RF), Support

Vector Machine (SVM), Decision Tree (DT) and K-Nearest

Neighbour (KNN).

To validate each model, we split our data into 75% for

training and 25% for final validation. We use a 10-fold

stratified cross-validation on the training data to select the best

model parameters and use those parameters to evaluate the

model on the unseen hold-out set.

As the augmented samples in our dataset are variants of the

original ones, it was important to keep them in the same sets,

to ensure that no similar data pairs are included in both the

training and test sets. For the support set used for classification,

we select the most centred examples to represent each class.

FlakyCat relies on a Siamese network. It is trained with

combinations of data by indicating whether these data are

similar or not so that the model can learn what makes them

similar. Since we train with combined data, the balancing of

data is not required, because it is automatically over-sampled.

2) Parameters:
We tuned FlakyCat’s parameters on the training set using the

Random Search method [61] and a 10-fold cross-validation, by

testing random combinations of the most important parameters

that have a direct impact on the model performance, which

include the similarity margin used in the triplet loss function,

the learning rate, the number of warm-up steps, and the support

set size.

Figure 4 shows the resulting weighted F1 score for

each tested parameter combination using a 10-folds cross-

validation. A high learning rate and a number of warm-up

steps have a negative impact on the performances, while other

parameters have a lower influence. Following these results,

for the final validation on the hold-out set, we use the best

parameter combination identified in the Figure 4: a similarity
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margin of 0.30, a learning rate of 0.001, a number of warm-up

steps of 400, and a support set with 10 examples from each

category.

For baseline classifiers, we keep the standard values used by

previous works. We varied the number of trees in the Random

Forest classifier, we tested values from 100 to 1000 with a step

of 100. We observed that this does not make much difference

regarding the F1 score (≤ 3%), and we identified 1000 as the

number giving the best results.

Fig. 4. F1 score for different values of parameter combinations using Random
Search and a 10-Folds cross-validation. The combinations on the Y axis have
the form : (learning rate, number of warm-up steps, similarity margin, support
set size).

3) Evaluation metrics:
We use the standard evaluation metrics to compare classifiers,

including precision, recall, Matthews correlation coefficient

(MCC), F1 score, and Area under the ROC curve (AUC).

These metrics have been used to evaluate the performance of

classifiers, including binary classification of flaky tests [12],

[13], [36]. Since our dataset is unbalanced, weighted metrics

are more suitable for our evaluation.

4) Research questions:
a) RQ1: How effective is FlakyCat compared to ap-

proaches based on other combinations of test representation
and classifier?: This question aims to evaluate FlakyCat

and compare it to other test representation techniques, i.e.,
vocabulary and test-smell-based and traditional classifiers, i.e.,
SVM, KNN, decision tree and random forest.

b) RQ2: How effective is FlakyCat in predicting
each of the considered flakiness categories?: This question

evaluates FlakyCat’s ability to classify the different categories

of flakiness. To perform this, we split the dataset into five sets

following the categories: Async waits, Test order dependency,

Unordered collections, Concurrency, and Time. Then, we use

the same settings as for RQ1 to tune the Siamese network,

train it, and evaluate it for each category.

c) RQ3: How do statements of the test code influence
the predictions of FlakyCat?: We applied the technique

we introduced in Section IV for CodeBERT-based model

interpretability to FlakyCat. We classified all original short

data (323 tests). For 16 tests, the score doesn’t decrease by

deleting one statement, and thus we collected 307 statements

of interest, important for FlakyCat’s decision-making. To

better understand what information emerges, we proceeded

with the following analysis. First, we regroup statements by

category of flakiness (according to the flaky test they belong

to). Then, we want to share information on what type of

statements FlakyCat found useful. To do so, we look through

the list of statements and attempt to identify recurring code

statements and categorize them. The process of identifying

statement types is exploratory and inspired by qualitative

research. Two of the authors of this paper went through the list

of statements and identified nine recurring types of statements:

• Control flow: Includes decision-making statements,

looping statements, branching statements, Exception han-

dling statements.

• Asserts: All types of assertions in tests.

• Threads: statements related to threads and runnables.

• Constants: Constant values such as strings, numbers

and boolean values independent of variables, and final

variables.

• Waits: All explicit wait statements.

• Usage of date/time: Statements that perform operations

on time values, dates.

• Network: Statements related to data exchange in a local

or external network between two endpoints, and session

management.

• I/O: Statements related to input/output, database and file

access.

• Global variables: Includes the use of global variables.

With this question, we investigate the prevalence of these

statement types in each flakiness category.

VI. RESULTS

A. RQ1: How effective is FlakyCat compared to approaches
based on other combination of test representation and classi-
fier?

Following the outlined experimental design, we trained and

tested FlakyCat and the four traditional classifiers, using the

three source code representations, the vectors obtained from

CodeBERT, the vectors based on vocabulary, and the ones

based on test smells. The obtained results are presented in

Table III. The results show that FlakyCat achieves the best

performance for all evaluation metrics. It obtained an average

weighted F1 score of 73% and a precision of 74%. We get

an MCC of 0.65 (bounds for this metric are between -1 and

1), being close to 1 means a perfect classification. Finally, the

AUC of 0.83 shows that the model is able to distinguish flaky

tests from different classes.
a) Representation effect: Regarding the three code repre-

sentations, CodeBERT achieves the best performance for RF,

KNN, and FSL, with an F1 score between 0.51 and 0.73 for

the three classifiers. When using the vocabulary-based vectors,

SVM and DT perform better than using CodeBERT. With this

representation, all classifiers do not exceed an F1 score of

0.67. The representation based on test smells yields lower

results, with the best F1 score being 0.29. The CodeBERT

representation seems then promising to use when learning to

classify flaky tests according to their categories.
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TABLE III
COMPARING PERFORMANCES OF FLAKYCAT (CODEBERT AND FEW-SHOT LEARNING) WITH TRADITIONAL MACHINE LEARNING CLASSIFIERS

Model Smells-based Vocabulary-based CodeBERT-based
Precision Recall MCC F1 AUC Precision Recall MCC F1 AUC Precision Recall MCC F1 AUC

SVM 0.11 0.34 0.00 0.17 0.50 0.61 0.52 0.37 0.45 0.66 0.27 0.43 0.22 0.33 0.60
KNN 0.24 0.37 0.11 0.29 0.55 0.44 0.48 0.31 0.45 0.65 0.56 0.53 0.37 0.51 0.68
DT 0.31 0.33 0.10 0.23 0.53 0.53 0.53 0.39 0.52 0.69 0.49 0.50 0.34 0.49 0.67
RF 0.32 0.34 0.12 0.24 0.54 0.72 0.61 0.49 0.56 0.72 0.68 0.66 0.55 0.62 0.76

FSL 0.13 0.18 -0.01 0.13 0.50 0.69 0.68 0.58 0.67 0.79 0.74 0.73 0.65 0.73 0.83

b) Classifier effect: Regarding the choice of classifier,

we find that the FSL classifier based on similarity achieves

the best performance using the representations based on Code-

BERT and vocabulary. Among traditional classifiers, Random

Forest obtains the best results, as reported in previous flaky

test classification studies [30], [31]. Classifiers relying on the

smell-based representation have more difficulty to classify

flaky tests. Using this code representation, the KNN classifier

achieved the best F1 score: 0.29. Two categories had a positive

impact to achieve this score: Async wait, and Test order
dependency. This can be explained by the presence of test

smells strongly related to these two categories, including

Sleepy test and Resource optimism. Other flakiness categories

seem to be more challenging to predict using existing test

smells.

c) Random-guessing comparison: In the previous para-

graph, we compared different models and different code repre-

sentations and saw that FlakyCat gave the best results. Because

all the existing approaches were designed to detect flaky tests

from non-flaky tests, they might not be suitable for the specific

task of classifying flaky tests according to their categories.

As no other category-based classification technique exist so

far, we show the performance of a random guesser as another

baseline. We consider two random guessing approaches, the

first one where we randomly affect a class to each flaky test

and the second one where we weigh the random affectation

according to the prevalence of flaky tests in each category.

Both approaches are considered as the dataset balance might

be different from the one found in various projects. Results

are listed in Table IV. F1 scores for Random and Weighted

Random are respectively of 0.21 and 0.25. With an F1 score

of 0.73, we see that FlakyCat performs better than the two

considered random-guessing approaches.

RQ1 Overall, our results show that automatic classi-

fication of flaky test categories with a limited amount

of data is a challenging but feasible and promising

task. The representation based on CodeBERT gives

better results compared to the ones based on test smells

and vocabulary. We also found that Few Shot Learn-

ing performs better than traditional machine learning

classifiers.

TABLE IV
PERFORMANCE OF RANDOM GUESSING APPROACH

Method Precision Recall MCC F1 AUC
Random 0.25 0.20 -0.01 0.21 0.50

Weighted Random 0.25 0.26 0.02 0.25 0.51

Fig. 5. Precision and Recall per flakiness category using FlakyCat

B. RQ2: How effective is FlakyCat in predicting each of the
considered flakiness categories?

Figure 5 shows performances achieved by FlakyCat for

each of the five flakiness categories. Results show that the

category Async wait is the easiest for the model to classify,

with an F1 score of 0.81. The category Test order dependency,

Unordered collections and Time respectively have an F1 score

of 0.80, 0.78 and 0.66. Concurrency performances are lower

with an F1 score of 0.39. We suspect that concurrency issues

happen in many cases in the code under test. As FlakyCat

only relies on the test source code, this would indeed

explain why performances are lower in this case. Another

supposition is that concurrency issues and asynchronous waits

are sometimes closely related. We discuss an example of this

in Section VII-A.

RQ2 While the four flakiness categories Async waits,

Test order dependency, Unordered collections, and

Time show good ability to be detected automatically,

Concurrency remains difficult to detect by relying only

on the test case code.
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TABLE V
PREVALENCE OF DIFFERENT TYPES OF STATEMENTS IN EACH FLAKINESS CATEGORY FOR TRUE POSITIVE PREDICTIONS

#Statements Control flow Constants Asserts Threads Waits Network Global variables Usage of Date/time I/O
Async Waits 80 16,25% 55% 20% 20% 27,5% 25% 11,25% 3,75% 6,25%
Concurrency 34 23,53% 47,06% 17,65% 29,41% 14,70% 14,70% 5,88% 17,65% 2,94%

Test order dependency 69 8,69% 60,87% 13,04% 0% 4,35% 8,69% 2,90% 7,25% 47,82%
Time 32 18,75% 56,25% 50% 0% 0% 0% 9,375% 62,5% 6,25%

Unordered collections 42 4,76% 66,67% 38,09% 0% 0% 2,38% 4,76% 0% 4,76%

C. RQ3: How do statements of the test code influence the
predictions of FlakyCat?

Table V reports the prevalence (%) of the different types

of statements among all influential statements per flakiness

category, e.g., 100% Asserts in the Time category would mean

that all influential statements for the Time category contain

assert statements.

Compared to other flakiness categories, the percentage of

assertions in the influential statements of Time and Unordered
collections is high, 50% and 38.09% respectively. Based on

our analysis, this includes in particular assertions that perform

exact comparisons, such as assertEquals(), between

constant values and collection items, or dates for example.

29,41% of influential statements in the Concurrency category

include thread manipulation, and 20% for the Async Waits
category, while the rest of the categories have none. State-

ments containing explicit waits represent respectively 27,5%

and 14,7% for Async Waits and Concurrency categories, but

below 5% for Test order dependency and zero for the others.

Statements containing date or time values are most common

in the Time category with 62,5%. We note that they appear

as well in a small proportion, 17,65%, for Concurrency.

Statements from the I/O calls group are mainly found in

the Test order dependency. For Control flow, Constants, and

Global variables statements are almost evenly distributed. We

include a spreadsheet containing all statements analyzed in our

replication package.

RQ3 The interpretability technique we presented en-

able us to find which statements impact FlakyCat’s

decision. We also find hints that specific flakiness

categories have distinct statement types (e.g., Usage

of Date/time for the Time category) while some others

have similar prevalence (e.g., Threads for Async Waits
and Concurrency categories). By highlighting these

statements, our interpretability technique may provide

information to developers to better understand flaky

tests, their categories and their causes.

VII. DISCUSSION

A. Reasoning about the statements influencing FlakyCat and
the usage of flakiness categories

Listing 1 gives an example of a flaky test taken from

the Neo4J project3 found during the data collection part. As

3https://github.com/neo4j/neo4j/commit/c77e579b40b02087

explained in the commit message, the flakiness was caused by

a race condition and thus, we affected it to the Concurrency

category. FlakyCat classified this test as Async wait. The

interpretability technique that we introduced in Section IV

reveals that the statement on line 6 is the most influential for

the model’s decision. It contains the await() function, and

this is likely the reason why the flaky test was categorized as

Async wait. Furthermore, similarity score for the Concurrency

category is high, and it comes as FlakyCat’s second guess.

When looking at the test, we understand that an

asynchronous wait was performed to wait for a thread.

We also found similar examples concerning other categories,

such as waits relying on network resources. First, we argue

that our interpretability technique can help to understand the

cause of flakiness, even when FlakyCat apparently mislabelled

the test. Secondly, we advance that flakiness categories as

commonly defined in research studies [7], [24] can overlap,

i.e., a flaky test can belong to several categories. The

application of machine learning to determine the causes of

flakiness is promising and should receive attention. It would

also benefit from a more precise, orthogonal classification of

flakiness categories.

1 @Test
2 public void shouldPickANewServer[...]() throws

Throwable {
3 [...]
4 Thread thread = new Thread( () -> {
5 try {
6 startTheLeaderSwitching.await();
7 CoreClusterMember theLeader = cluster.
8 awaitLeader();
9 switchLeader( theLeader );

10 } catch ( TimeoutException |
InterruptedException e ) {

11 // ignore
12 }});
13 [...]
14 }

Listing 1. A flaky test belonging to two categories

B. The effect of considering an additional category

Our results showed that flakiness categories can be classified

automatically. We carried out our main experiments with five

categories of flakiness for which we had a reasonable number

of tests. Still, we believe that one interesting aspect of our

study is to understand the impact of adding other categories to

FlakyCat. For this, we investigate the performance of FlakyCat

for each category (similarly to RQ2), but we add to our set the

Network category, which is the next category with the most
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samples in our dataset (25 tests). F1 scores and the accuracy

obtained for each category are presented in Figure 6.

Compared to the results previously reported in Table III, we

observe that the performances of each category are slightly

impacted. The Async waits category is the most impacted

one. Indeed, after adding the Network category, we get an

overall F1 score of 0.68. The added category gets the worst

results. This performance drop can be explained by multiple

factors. First, having more categories to differentiate makes it

more challenging for FlakyCat to distinguish between them.

Secondly, the overall F1 score is strongly affected by the poor

performance observed in the new category. The performance

for the Network category can be a result of the too low number

of examples in this category (25). Despite using FSL, the

model still requires enough data points in each category. While

collecting data, we noticed that flaky tests caused by Network

were not common. These findings align with the ones about

the prevalence of the different categories reported in previous

empirical studies [7], [24]. In addition, flaky tests related to

Network issues could also be considered as Asynchronous

waits in many cases, as previously explained.

Fig. 6. Precision and Recall per flakiness category when adding the category
”Network”

VIII. THREATS TO VALIDITY

a) Internal validity: One threat to the internal validity is

related to the dataset we used in our study. Flaky tests were

gathered from different sources, as explained in Section V-A.

It is possible that flaky tests were assigned to the wrong

label, which would impact the training and evaluation of our

model. Certifying the category based on the test source code is

complex and can as well be subjective. To ensure the quality

of the data, the first two authors reviewed the collected flaky

tests and confirmed their belonging to the assigned category.

Similarly, the identification of statement types in RQ3

required a manual analysis of the most influential statements.

Hence, the identified types can be subjective and the assign-

ment of statements is prone to human errors. To mitigate this

risk, we kept the statement types factual, e.g., control flow

and asserts. This allows us to avoid assignment ambiguities

and intersections between the different statement types.

b) External validity: The first threat to external validity

is the generalizability of our approach. In this study, we

train a model to recognize flaky tests from four of the most

prevalent categories, but we are not sure of the performances in

other categories. We discussed the addition of two categories

(Network and Randomness), and retrieved that the number of

examples is one of the influencing factors.

c) Construct validity: One potential threat to construct

validity regards the metrics used for the evaluation study.

To alleviate this threat, we report MCC, F1 score, and AUC

metrics in addition to the commonly-used precision and recall.

As our data is not evenly distributed across the different

categories, we report the weighted F1 score.

IX. CONCLUSION

Test flakiness is considered as a major issue in software

testing as it disrupts CI pipelines and breaks trust in regression

testing. Detecting flaky tests is resourceful, as it can require

many reruns to reproduce failures. To facilitate the detection,

more and more studies suggest static and dynamic approaches

to predict if a test is flaky or not. However, detecting flaky

tests constitutes only a part of the challenge, since it remains

difficult for developers to understand the root causes of flaki-

ness. Such understanding is vital for addressing the problem,

i.e., fixing the cause of flakiness. At the same time, researchers

would gain more insights based on this information. So far,

only a few automated fixing approaches were suggested and

these are focusing on one category of flakiness. Knowing the

category of flakiness for a given flaky test is thus a piece of

key information.

With our work, we propose a new approach to this problem

that aims at classifying previously identified flaky tests into

their corresponding category. We propose FlakyCat, a Siamese

network-based multi-class classifier that relies on CodeBERT’s

code representation. FlakyCat addresses the problem of data

scarcity in the field of flakiness by leveraging the Few-

Shot Learning capabilities of Siamese networks to allow the

learning of flakiness categories from small sets of flaky tests.

As part of our evaluation of FlakyCat, we collect and make

available a dataset of 451 flaky tests with information about

their flakiness categories.

Our empirical evaluation shows that FlakyCat performs the

best compared to other code representations and traditional

classification models used by previous flakiness prediction

studies. In particular, we reach an F1 score of 73%. We also

analyzed the performances with respect to each category of

flakiness, showing that flaky tests belonging to Async waits,

Test order dependency, Unordered collections, and Time are

the easiest to classify, whereas flaky tests from the Concur-
rency category are more challenging. Finally, we present a

new technique to explain CodeBERT-based machine learning

models. This technique helps in explaining what code elements

are learnt by models and give more information to developers

who wish to understand flakiness’s root causes.
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