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Abstract—Logs generated by large-scale software systems
provide crucial information for engineers to understand the system
status and diagnose problems of the systems. Log parsing, which
converts raw log messages into structured data, is the first step to
enabling automated log analytics. Existing log parsers extract the
common part as log templates using statistical features. However,
these log parsers often fail to identify the correct templates
and parameters because: 1) they often overlook the semantic
meaning of log messages, and 2) they require domain-specific
knowledge for different log datasets. To address the limitations of
existing methods, in this paper, we propose LogPPT to capture
the patterns of templates using prompt-based few-shot learning.
LogPPT utilises a novel prompt tuning method to recognise
keywords and parameters based on a few labelled log data. In
addition, an adaptive random sampling algorithm is designed
to select a small yet diverse training set. We have conducted
extensive experiments on 16 public log datasets. The experimental
results show that LogPPT is effective and efficient for log parsing.

Index Terms—log parsing, few-shot learning, prompt-tuning,
deep learning

I. INTRODUCTION

Large-scale software-intensive systems often produce a

large volume of logs to record runtime status and events

for troubleshooting purposes. Logs play an important role

in the maintenance and operation of software systems, which

allow engineers to better understand the system’s behaviours

and diagnose problems. The rich information included in log

data enables a variety of log analytics tasks, such as anomaly

detection [1], [2], [3], [4], root cause analysis [5], [6], failure

prediction [7], [8], and log compression [9], [10]. Among

them, the first and foremost step is log parsing, which parses

free-text raw log messages into a structured format [11]. The

structured log data from log parsing are fed to various machine

learning (ML) or deep learning (DL) models to perform many

downstream analysis tasks.

Log parsing is the task of converting a raw log message into

a specific log template. As shown in Figure 1, log messages

are generated from logging statements in the source code. A

log message usually contains a header that is automatically pro-

duced by the logging framework and includes information such

as component and verbosity level. The log message body (log

message for short) typically consists of two parts: 1) Template -

constant strings (or keywords) describing the system events; 2)

Parameters - dynamic variables, which vary during runtime and

†Hongyu Zhang is the corresponding author.

reflect system runtime information. For example, in the first log

message in Figure 1, the header (i.e., “17/08/22 15:50:46”,

“INFO”, and “BlockManager”) can be easily distinguished

through regular expressions. The log message consists of a

template “Putting block <*> with replication took
<*>” and the parameters including “rdd_1_1” and “0”.

# Logging statements from Spark (spark/storage/BlockManager.scala)
logError(s"Failed to report $blockId to master; giving up.")
logDebug(s"Putting block ${blockId} with replication took $usedTimeMs")
logInfo(s"Writing block $blockId to disk")

Log Message

Structured Log

Logging Statements

Fig. 1. An example of log parsing from Spark

To achieve automated log parsing, many data-driven ap-

proaches [12], [13], [14], [15] have been proposed over the

years to extract the common parts that constantly occur among

log messages as templates and the dynamic parts that vary

during runtime as parameters. Although making progress,

existing log parsers still suffer from unsatisfactory accuracy,

which may significantly affect the follow-up analysis such as

log-based anomaly detection [16]. For example, the existing

state-of-the-art log parsers Drain [12] and AEL [17] only

achieve an average Parsing Accuracy of 0.34 and 0.28 on 16

log datasets [18]. We have identified the following limitations

of the existing log parsers:

• Accuracy: Existing log parsers extract common parts as

templates using statistical features (e.g., word length, log

length, frequency) and ignore the semantic meaning of log

messages. Without considering the semantic information,

traditional log parsers tend to misidentify parameters as

keywords [19] in many cases (e.g., when encountering

previously unseen log templates).

• Robustness: Existing log parsers are not robust across

different types of logs because they require domain-

specific knowledge for different datasets [20]. The domain-

specific knowledge includes data pre-processing (e.g.,
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defining regular expressions) and hyper-parameter settings

(e.g., the number of clusters or similarity threshold).

The accuracy of these log parsers could be significantly

affected by the input domain-specific knowledge. For

example, without the pre-processing step, the parsing

accuracy can decline by 6.1%-73.5% [21]. When applying

the existing log parsers to a new log dataset, due to

different logging formats and behaviours, time-consuming

adjustment of hyper-parameters and regular expressions

are needed [19].

To overcome the above-mentioned limitations, in this paper,

we propose LogPPT, a novel log parser with prompt-based

few-shot learning. LogPPT is able to capture the semantic infor-

mation of log messages to identify keywords and parameters in

log messages by learning from only a few labelled log messages.

First, we design an Adaptive Random Sampling algorithm that

can sample a small and diverse set of log messages to label

as the training data. The training data is a set of labelled

logs that contain raw log messages and the corresponding

ground truth templates. Second, to effectively train a model

with a few labelled log data, we tune a pre-trained language

model (e.g., RoBERTa [22]) to predict a specific virtual label

token (“PARAM”, an acronym for parameters) at the position of

parameters in the log message in a few-shot learning manner.

The embedding vector for the virtual label token “PARAM”

is generated based on the word distribution from language

model predictions and the unlabelled log dataset. After training,

LogPPT can be directly applied to parse new log data. Our

proposed method does not require any pre-processing step

and uses the same set of hyper-parameter values for different

datasets, which is robust across different logging formats and

behaviours, and more generalised than existing approaches.

We have evaluated LogPPT on 16 public log datasets [11].

LogPPT achieves over 0.9 average Group Accuracy [11] and

Parsing Accuracy [18], [19] when using only 32 labelled sam-

ples. The experimental results show that LogPPT is effective

and efficient. It outperforms state-of-the-art parsers by 16% on

Group Accuracy [11] and about 84% on Parsing Accuracy [19].

Moreover, LogPPT is also robust across different log datasets.

To summarise, our main contributions are as follows:

• We propose LogPPT, a prompt-based few-shot log parser

that can precisely capture the patterns of templates

and parameters in log messages. LogPPT uses a novel

prompt tuning method to effectively learn the semantic

information from a few labelled log samples. The pro-

posed approach does not require manually-defined regular

expressions for pre-processing and uses the same set of

hyper-parameter values for every dataset, thus can quickly

adapt to new log datasets.

• We evaluate LogPPT on 16 public log datasets, and the

results demonstrate that LogPPT outperforms existing

approaches. The experimental results confirm the effec-

tiveness and efficiency of our proposed method.

II. BACKGROUND AND MOTIVATION

A. Log Parsing

Log parsing is one of the first steps for log analysis tasks [11].

It is a process to extract the static log template parts and

the corresponding dynamic parameters (or variables) from

free-text raw log messages. For example, Figure 1 shows

an example of logs of the Spark system, where Datetime,

Component, and Level fields are the log header generated by

the logging framework and are generally easy to extract. The log

template “Putting block <*> with replication took
<*>” associated with parameters (e.g., “rdd_1_1”, “0”), in

contrast, is often difficult to identify. The goal of log parsing

is to convert each log message into a specific log template and

extract the corresponding parameters [11], [19].

The straightforward way of log parsing relies on handcrafted

regular expressions or grok patterns to extract log templates and

parameters [11]. However, manually writing regular expressions

to parse a huge volume of logs is time-consuming and error-

prone [11]. Some studies [23], [24] extract the log templates

from logging statements in the source code to compose regular

expressions for log parsing. However, it is not applicable in

practice since the source code is often unavailable, especially

for third-party libraries [11]. Therefore, regular expression

matching often serves as a pre-processing step to (1) separate

headers and content (which contains log templates and dynamic

parameters) from raw log messages, and (2) abstract some

special information such as IP address and ID to improve

parsing accuracy. To achieve the goal of automated log parsing,

many data-driven approaches have been proposed to identify

log templates as the frequent part of log messages. Data-driven

log parsing approaches can be divided into three main groups:

1) Frequent pattern mining. Some approaches, including

SLCT [25], LFA [15], and Logram [14], find frequent patterns

which emerge constantly across the entire log dataset. They

leverage the token position or n-gram information to extract

log templates based on frequent pattern mining.

2) Similarity-based clustering. These approaches apply

various clustering algorithms to group similar logs and consider

logs under the same group belonging to the same template.

Representative methods include LKE [26], LogSig [27], and

LenMa [28], which compute distances between two log

messages or their signature to cluster them based on similarity.

3) Heuristics-based parsing. AEL [17], Spell [13], or

Drain [12] propose heuristics-based log parsing methods that

leverage unique characteristics from log messages to extract

common templates efficiently.

Although making progress, traditional log parsers are still

criticized for unsatisfactory parsing accuracy due to the omis-

sion of semantic information or improper evaluation metrics.

Recent studies [18], [19] show that traditional approaches

focus more on grouping logs and fail to identify the correct

templates and parameters. For example, in Figure 1, some

tokens (such as “rdd_0_1” and “0”) are identified as keywords

by traditional log parsers because they do not vary in different

log messages. However, these tokens should be classified
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as parameters considering their semantic meanings. Besides,

existing log parsers are not robust across different log datasets.

They require domain-specific knowledge to define regular

expressions for pre-processing of different log data [20]. For

example, on the HDFS dataset [21], [29], block id (e.g.,

“blk_-6670958622368987959”) information is abstracted

from logs by using a regular expression “blk_-?\d+”. For a

new dataset such as BGL [21], [30], this regular expression

must be changed to match the core id such as “core.2275”

(i.e., “blk_-?\d+” → “core.\d+”). Moreover, existing log

parsers require specific hyper-parameters (e.g., number of

clusters or similarity threshold) for different datasets to optimize

the performance. For example, Drain [12] uses a low similarity
threshold of 0.2 for the HealthApp dataset and a high threshold
of 0.6 for the Proxifier dataset [11]. Due to different logging

formats and behaviours, when facing a new log dataset, existing

log parsers have to adjust the hyper-parameters and reconfigure

the regular expressions for pre-processing [19].

B. Language Models
1) Pre-training and Fine-tuning: Pre-trained models have

been shown effective in many natural language processing

(NLP) tasks. These language models (LM), such as BERT [31]

and T5 [32], are generally pre-trained using the Masked

Language Modelling (MLM) objective. During the pre-training

phase, the model learns to predict randomly masked input

tokens. Based on the idea that log is actually a natural language

sequence [2], some studies [16], [33], [34] have leveraged pre-

trained language models such as BERT [31] to analyse log

data. Language models are pre-trained on large-scale unlabelled

corpus and then fine-tuned to perform downstream tasks.
Fine-tuning a pre-trained model for downstream tasks [31],

[35] is a prevalent paradigm in the NLP field that further trains

the model in a supervised way. As shown in Figure 2(a), a

straightforward way to apply fine-tuning for log parsing is

to convert the log parsing task into the token classification

problem. The model can easily extract keywords and form log

templates by classifying whether a token in log messages is a

keyword or parameter (binary classification) using an additional

classifier. However, the inconsistency between pre-training

objectives and the fine-tuning objective (i.e., classification)

restrains the use of rich knowledge distributed in pre-trained

models [36], [37], leading to sub-optimal results. Besides, the

performance of fine-tuning significantly depends on the scale

of downstream data.

Fig. 2. An illustration of fine-tuning and prompt tuning for log parsing

2) Prompt Tuning: Recently, prompt tuning [37], [38], [39],

[40] has been proposed to close the gap between pre-training

and downstream tasks. Figure 2(b) illustrates the concept of

prompt tuning. Instead of designing a new training objective

for each downstream task, prompt tuning rewrites the input by

adding a natural language instruction such as “[S] is a [MASK]”

to reuse the masking objective for downstream tasks. Formally,

standard prompt tuning employs a prompt template Tprompt(.)
to convert the input X to prompt input Xprompt = Tprompt(X).
The prompt template is a textual string with unfilled slots to

fill the input X and a label slot [MASK].

For log parsing, a standard prompt template consists of three

unfilled slots to fill the input log message, the token needed

to be identified, and the label for the processing token. For

example, in Figure 2(b), the prompt template is in the form

of “[X] [S] is a [MASK]”, where [X], [S], and [MASK] are

the unfilled slots for the input log message, token, and label,

respectively. The LMs then try to fill the label slot [MASK] with

label words such as keyword or variable. After that, a verbalizer

is used to map each predicted label word to a class for the

input token. In Figure 2(b), the verbalizer contains label words

sets of “[const, keyword]” for keywords and “[parameter]” for

parameters. By enumerating over all tokens in a log message,

we can extract the corresponding template and parameters.

According to the flexibility of the prompt template, standard

prompt tuning techniques can be categorized into two types:

hard prompt and soft prompt. We briefly introduce each prompt

type in the following.

Hard Prompt. Hard prompt or discrete prompt [37],

[38] is a technique that modifies the input by adding fixed

natural language instructions. Hard prompt templates usually

correspond to natural language phrases [41], in which each

token in prompt templates is meaningful and understandable.

Although hard prompt has shown promising performance [38],

the template design and the label word choices are challenging

because it requires task-specific knowledge.

Soft Prompt. Soft prompt [42], [43] is an alternative to

hard prompt. Instead of using fixed discrete words as in hard

prompt, soft prompt uses virtual tokens, which are in the form

of continuous vectors and can be learnt during the tuning stage,

to construct prompt templates. The soft prompt is proposed to

remove the constraints of manually selecting a prompt template

in the hard prompt.

Although achieving promising results in various NLP tasks,

standard prompt tuning is insufficient for the log parsing task

because (1) it needs to enumerate all span candidates, which

is inelegant and time-consuming [40], and (2) it is sensitive to

noises (see Section VI-A for details).

In this paper, we apply prompt tuning to achieve the goal of

log parsing with a few labelled training data. However, instead

of using standard prompt tuning, we leverage the paradigm

of template-free prompt [39] for log parsing, which does not

require prompt templates as the instruction. In template-free

prompt [39], an additional virtual label token is generated and

plays the role of prompt instructions as in standard prompt

tuning. Then, the model learns to predict the virtual label token
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at the positions of parameters and the original token at the

positions of keywords using a custom MLM objective. The

template-free prompt tuning method [39] addresses the major

limitations of standard prompt by (1) relaxing the burden of

manually selecting prompt templates [39] and (2) performing

one-pass decoding to process all tokens simultaneously, which

is more efficient compared to the time-consuming enumeration

process of standard prompts [39], [40].

III. APPROACH

In this section, we describe the proposed LogPPT approach.

To overcome the limitations of existing approaches, we train a

model to capture the patterns of templates and parameters

based on the context information of log messages using

rich knowledge derived from language models pre-trained on

large corpora. Specifically, we apply the paradigm of prompt

tuning [39] to enable few-shot log parsing to better transfer the

knowledge from pre-trained language models to log parsing.

To make the best use of prompt tuning, it is essential to select

an optimized labelled training set for our method. Therefore,

we introduce an Adaptive Random Sampling algorithm to

effectively select a small number of samples for training.

The overview of the proposed approach is shown in Figure 3.

In the following, we first present the problem formulation in

Section III-A. Then, we describe the few-shot data sampling

method in Section III-B. Section III-C describes the training

process, which consists of three modules, including a pre-

trained language model, a virtual label token generation module,

and a training objective. Finally, we describe how to apply

LogPPT for online parsing in Section III-D.

A. Problem Definition

In this work, we transform the log parsing task into a

parameter recognition problem where only a small number

of labelled examples are used for training by adopting a novel

prompt tuning method [39]. Specifically, for a new dataset

D, we tune a pre-trained language model, M, to recognise

keywords and parameters in a log message through prompt

tuning. The model takes the input of a raw log message

consisting of n tokens, X = {x1, x2, . . . , xn} and predicts

a virtual label token “PARAM” at the position of parameters.

For keywords, the model remains to predict the original tokens.

Formally, the model M is trained to generate the output,

Y = {y1, y2, . . . , yn}, where:

yi = M(xi) =

{
“PARAM” if xi is a parameter

xi if xi is a keyword
(1)

For example, as shown in Figure 3, the model is trained to

predict the parameter “blgio91” as a label token “PARAM”. For

keywords such as “failed”, the model will predict the original

words. “PARAM” is a specific virtual token that does not have

any linguistic meaning. It indicates parameters in log messages

and guides the model to recognise those parameters based

on their relations with the “PARAM” token. The embedding

vector of “PARAM” is calculated based on the most frequent

Fig. 3. An overview of LogPPT

parameters in log messages. “PARAM”, therefore, is generated

using both labelled training data and unlabelled data to better

represent the meaning of parameters in log messages. In the

online parsing (inference) phase, all tokens with yi = “PARAM”
are considered parameters, and other tokens are included in

the log template.

B. Few-shot Data Sampling

During the training phase, our proposed method requires

a small amount of labelled log data as the training dataset.

To collect accurately labelled samples with low manual effort,

we propose a simple yet effective approach to select a small

number (K) of labelled samples. Firstly, training log messages

are cleaned by applying some commonly-used pre-processing

techniques [2], [16], such as removing all non-character tokens,

stop words or camel case. Then, we propose to use an

Adaptive Random Sampling algorithm from Adaptive Random

Testing [44] to obtain a diverse and evenly distributed sample

set. Algorithm 1 describes the adaptive random sampling based

algorithm for few-shot data selection.

Algorithm 1 takes a raw log dataset D and a desired

number of samples in training set K. At line 1, all log

messages in D are pre-processed by applying commonly-used

pre-processing techniques [2], [16]. The result of this step is a

set L̂ = {. . . , (cln, orig), . . . } in which each element contains

a clean log message and an original log message. At lines
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Algorithm 1: Few-shot Data Sampling

Data: D: Log dataset
K: The number of collected samples

Result: Dtrain: a set of K-labelled samples

1 ̂L← pre-process(D) // ̂Li = {cln, org}: clean and original logs

2 Dtrain ← Ø // initialize the training set

3 S ← {l | l ∈ ̂L and l.cln is the shortest cleaned log}
4 while K > 1 do
5 ̂C ← Ø // initialize candidate set

6 for i = 1→ η do // η = 32

7 ̂C.add({random c ∈ ̂L| c.cln /∈ ̂C & c.org /∈ S})
8 end

/* compute the similarities between logs in ̂C and S */

9 Δ← Ø

10 for c = {cln, org} ∈ ̂C do
11 δ ← 0

/* find the nearest neighbour of c in S and calculate the

similarity between c and its nearest neighbour */

12 foreach l = {cln, org} ∈ S do
13 δ = MAX(δ, similarity(c.cln, l.cln))
14 end
15 Δ.add(δ)
16 end

/* select the candidate with the longest distance/smallest

similarity to its nearest neighbour in S */

17 S.add({c ∈ ̂C | Δc is smallest})
18 K ← K − 1
19 end

/* label the sample set S of K samples as the training set */

20 foreach s = {cln, orig} ∈ S do
21 Dtrain.add({s.orig, template(s.orig)})
22 end
23 return Dtrain

2-3, the algorithm initializes the following two components:

(1) an empty set Dtrain, which is the result of the algorithm;

(2) a set S, which contains the shortest log message at first,

to store selected log messages to label. At lines 4-19, the

algorithm iteratively selects one log message per iteration

based on their similarities until S contains K samples. From

lines 5-8, η random candidate logs from L̂ are selected and

stored in Ĉ. Then, for each candidate in Ĉ, the algorithm finds

and calculates the similarity with its nearest neighbour in S
(lines 9-16). At line 17, the algorithm finds a candidate c in

Ĉ which has the smallest similarity with its nearest neighbour

(i.e., smallest Δc) and inserts it to the sample set S . The outer

loop repeats until S contains K elements. From lines 20-23, the

algorithm collects the templates for all original log messages

in S from user feedback and returns Dtrain as the final output.

C. Prompt-Tuning for Log Parsing

In this work, we take advantage of prompt-tuning, which

recently set the state-of-the-arts for many NLP tasks, by

applying the entity-oriented LM objective [39]. The essence

behind this idea is that (1) most keywords in log statements

are valid words and readable, which can be looked up in a

dictionary [33], thus are easier to be predicted by the language

model; and (2) parameters, in contrast, are constantly changing,

which are hard to be predicted by the language model. In view

of this, we transform the log parsing task into a label token

prediction problem. Specifically, for parameters, we force the

model to predict the virtual label token “PARAM”, while for

keywords, the model is trained to predict the original words.

1) Pre-trained Language Model: Pre-trained language mod-

els [22], [31], [45], [35] have been shown to be effective in

many NLP tasks. These models are pre-trained on large-scale

unlabelled corpus and then usually fine-tuned on downstream

tasks. Recent studies [16], [33] demonstrate that these pre-

trained models can be applied to understand the semantic

meanings of log messages, thus favouring many downstream

log analytics tasks. In this paper, we choose RoBERTa [22]

as the studied pre-trained model since it is one of the most

widely-used models. RoBERTa is an encoder-only model and

uses the same transformer architecture as BERT [31]. Different

from BERT, RoBERTa is trained to predict the mask token

with a large byte-level Byte-Pair Encoding (BPE) [46]. One

of the main reasons we choose RoBERTa over BERT is that

the use of BPE allows RoBERTa to tokenize any input text

without introducing any “unknown” tokens by tokenizing out-

of-vocabulary words into subwords. This makes RoBERTa

more suitable for log parsing because parameters created

by developers are far beyond the scale of common English

words and constantly changing, which would incur the out-

of-vocabulary problem [19]. Several studies also found that

RoBERTa is effective for log analysis [16], [33], [47].

2) Virtual Label Token Generation: Given an input sequence,

X = {x1, x2, ..., xn}, we adopt the template-free prompt

tuning method [39] to predict a virtual label token “PARAM” at

the position i via the pre-trained language model M, where xi

is a parameter. Since all parameters are converted to the same

token, it is essential to find a pivot token that can properly

represent the parameters.

From the training set Dtrain={(Xi,Yi)}Ki=1, we leverage the

pretrained language model M to get the probability distribution

of predicting each token t at each position i. Specifically,

we feed each sample (X,Y ) into M and get the probability

distribution p(x̂i = t|X) of predicting each token t in the log

message X . Then, for each position i which is indicated as

a parameter, we select the topk predicted tokens of xi as the

initial parameters indication set Vini. This step aims to select

topk tokens having a similar meaning to the original parameter

tokens to enrich the parameters indication set.

From the initial label-words set Vini, we simply search for

the most frequent word in the unlabelled data. Specifically, we

calculate the frequency φ(x = t|D) of each token t ∈ Vini

and select the most frequent words by ranking:

V = argmax
t

φ(x = t|D), ∀t ∈ Vini (2)

After obtaining the set V , we assign the embedding vector

for the virtual label token “PARAM” by calculating the mean

vector of all tokens in V and add it to the language model M.

3) Training: Given the input log message X =
{x1, x2, . . . , xn}, we construct a target sequence Y =
{y1, y2, . . . , yn} by replacing the parameter at the position
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j with the virtual label token “PARAM”, and maintaining the

original words at keyword positions using Equation 1. Then,

the LM model is trained to maximize the probability P (Y |X)
of the target sequence Y :

L = − 1

K

i=1∑
K

(
1

n

n∑
j=1

logP (xj = yj |Xi)

)
(3)

where K is the number of labelled training samples.

Note that we reuse the whole pre-trained model during

the tuning process. The entity-oriented objective is similar to

the LM-based (i.e., mask token prediction) objective, which

can reduce the gap between pre-training and fine-tuning, thus

allowing our model to keep the knowledge learned by the

pre-trained LM model.

D. Online Parsing

During online parsing (inference), we directly feed the log

messages into the trained model, which will first tokenize the

input to a set of tokens and then predict their corresponding

target tokens. If a token is predicted as “PARAM”, it will be

integrated into the parameter list; otherwise, it will be kept in

the log template. Finally, we follow [18] to post-process log

templates by replacing consecutive parameters with a single

parameter. Note that we only need a one-pass decoding process

to parse a log message, which is efficient when scaling to a

large volume of logs.

IV. EXPERIMENTAL DESIGN

A. Research Questions

We evaluate our approach by answering the following

research questions (RQs):

RQ1: How effective is LogPPT?

RQ2: How efficient is LogPPT?

RQ3: How do different modules contribute to LogPPT?

RQ4: How does LogPPT perform with different tuning

techniques?

B. Datasets

We conduct experiments based on datasets initially collected

from the LogPai benchmark [11], [48], which consists of log

data of 16 different systems, including distributed systems,

supercomputers, operating systems, mobile systems, server

applications, and standalone software. To determine the ground

truth log templates, Zhu et al. [11] randomly sampled 2,000

log messages for each dataset and manually labelled them.

However, recent studies [18], [19] point out that there are

multiple errors from these original datasets. Therefore, Khan

et al. [18] applied some heuristic rules such as Double Space

or User-defined String to fix incorrect templates in the original

datasets. In this study, we use the corrected version of these

16 datasets from [18] in our evaluation.

C. Baselines

We compare our proposed method with five state-of-the-

art methods, including AEL [17], LenMa [28], Spell [13],

Drain [12], and Logram [14]. These approaches apply many

techniques such as similarity-based clustering (i.e., LenMa),

frequency-based mining (i.e., AEL and Logram), or heuristics-

based searching (i.e., Drain and Spell). We choose these five

approaches in our evaluation since they have their source

code publicly available; and a prior study [11] finds that these

approaches have the highest accuracy and efficiency among

all the evaluated log parsers. We adopt the implementation of

these methods from their replication packages [49], [50].

For a fair comparison, we extend baseline methods to include

the labelled data from the data sampling phase. We transform

the message-level labels into token-level labels by splitting log

messages using default separators of each method.

D. Evaluation Metrics

Following recent studies [11], [18], [19], [20], we apply

three metrics in our evaluation, including:

Group Accuracy (GA): Group Accuracy [11] is the

most commonly used metric for log parsing. Group Accuracy

considers template identification as a clustering process in

which log messages with different log events are clustered into

different groups [18]. The GA metric is defined as the ratio of

“correctly parsed” log messages over the total number of log

messages, where a log message is considered “correctly parsed”

if and only if it is grouped with other log messages consistent

with the ground truth. However, recent studies [18], [19] show

that GA only accounts for how the parsed templates support the

log message grouping activity instead of considering whether

the templates and parameters are correctly identified or not.

Parsing Accuracy (PA): The Parsing Accuracy (or Message-

Level Accuracy [19]) metric is defined as the ratio of “correctly

parsed” log messages over the total number of log messages,

where a log message is considered to be “correctly parsed” if

and only if every token of the log message is correctly identified

as template or variable. This metric is much stricter than Group

Accuracy since any incorrectly parsed token will lead to the

wrong parsing result for the whole log message. We found

that this metric is useful when evaluating the performance of

log parsers when dealing with unseen log events compared

to Group Accuracy. For example, for those log events that

only appear once, GA always considers them as correctly

identified since they belong to the correct groups. In contrast,

PA could mark this identification as incorrect if some variables

are incorrectly recognised as keywords.

Edit Distance (ED): Edit Distance is proposed in [20].

Different from GA and PA, Edit Distance is used to evaluate the

template extraction in terms of string comparison. Specifically,

Edit Distance (or Levenshtein edit distance) is computed

by counting the minimum number of operations required to

transform one template into the other [20]. The score of Edit

Distance for a dataset is computed as the median edit distance

of all parsed template and ground truth template pairs. By

computing the distance between parsed templates and ground
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truth templates, this metric can measure the accuracy of log

parsers in terms of meaning similarity (i.e., lexical similarity in

our evaluation) between parsed results and ground truth. Note

that the smaller the distance between two templates, the more

similarity between them.

E. Implementation and Environment

We conduct our experiments on a GPU server equipped with

NVIDIA Tesla V100 GPU and CUDA 10.2. We implement

LogPPT with Python 3.8 and PyTorch 1.7. Followed recent

studies for prompt tuning [36], [38], during the training process,

we utilize AdamW [51] optimizer and set the initial learning

rate to 5e−5. We set the batch size as 8 and train the model for

200 steps. AdamW optimizer is used with a linear decaying

schedule with 10% warm-up steps. During the online parsing

phase, we set the batch size to 32. In the Virtual Label Token

Generation module, we calculate the embedding of the virtual

label token “PARAM” from the 8 most frequent label tokens for

our experiments. We also evaluate the performance of LogPPT

with different numbers of frequent label tokens. We provide

the results in our project webpage1 due to space constraints.

The results show that the performance of the proposed method

is robust to the number of label tokens. It achieve consistently

good results when choosing at least four label tokens. In the

Few-shot Data Sampling module, we set K = 32 as the default.

We also experiment with different values of K (from 4 to 128)

in the experiments.

V. EXPERIMENTAL RESULTS

A. RQ1: Parsing Effectiveness

1) Accuracy: In this RQ, we compare LogPPT with five

state-of-the-art methods (including AEL [17], LenMa [28],

Spell [13], Drain [12], and Logram [14]) on all 16 log datasets.

Firstly, we compare the results of LogPPT with baselines using

K = 32 labelled samples. The results in terms of three metrics

(Group Accuracy, Parsing Accuracy, and Edit Distance) are

shown in Table I.

From the results, we can see that our model outperforms

baseline methods on almost all datasets in the three evaluation

metrics. Specifically, in terms of Group Accuracy (GA),

LogPPT exceeds the most powerful log parser (Drain) by

15.8% (0.923 versus 0.797 on average) and achieves the best

results on 12 out of 16 datasets. It is worth noting that

LogPPT achieves the accuracy of over 0.9 on 12 datasets

and achieves 1.0 accuracy on four datasets among them, which

is significantly superior to existing log parsers. In terms of

Parsing Accuracy (PA), LogPPT surpasses baselines by at

least 83.9% when achieving an accuracy of 0.916 on average.

LogPPT also achieves the best parsing accuracy on 14 out of

16 datasets. The high Parsing Accuracy suggests that LogPPT

is able to accurately recognise the templates and corresponding

parameters of log messages. The experimental results confirm

that LogPPT is effective in grouping logs into the same

templates and identifying correct log templates and parameters.

1 https://github.com/LogIntelligence/LogPPT

Inspired by recent studies [18], [20], we also evaluate our

proposed LogPPT in terms of Edit Distance (ED) to measure the

similarity between identified templates and their corresponding

ground truth. It can be seen that LogPPT achieves the best

average edit distance of 1.130, which is 7 times better than

Drain. Besides, LogPPT outperforms baseline approaches on

15 out of 16 datasets and achieves a comparable result on

the Apache dataset (0.024 versus 0). The experimental results

on Edit Distance show that the parsed templates produced by

LogPPT have high textual similarities with the ground truth.

The main reason for the high accuracy of LogPPT is that it is

capable of learning from semantic information of log messages,

thus is able to precisely identify the templates and parameters

of log messages.

2) Robustness: Our proposed LogPPT explicitly aims at

supporting a broad range of diverse log datasets as employing

a general log parser in production environments requires a

robust performance [11]. Existing log parsers are sensitive to

pre-processing steps, which involve domain-specific knowledge.

Therefore, they show low robustness against different logging

formats and behaviours [11], [21]. Therefore, we next analyze

and compare the robustness against different types of logs of

LogPPT with that of the baselines. Figure 4 shows the accuracy

distribution of each log parser across different log datasets.

Fig. 4. Accuracy Distribution of Log Parsers with 32-shot

From the results, we can see that LogPPT outperforms the

baselines in terms of robustness across different log types.

Existing methods require different regular expressions for pre-

processing and different hyper-parameter values, thus, perform-

ing inconsistently on different datasets. For example, Drain

uses different similarity threshold (e.g., 0.2 for HealthApp

and 0.6 for Proxifier) and different regular expressions (e.g.,

“blk_-?\d+” for HDFS and “core.\d+” for BGL) for different

datasets. In contrast, LogPPT does not require to manually

define regular expressions and achieves the smallest variance

over different datasets. LogPPT is robust and performs well

on most of the datasets (accuracy higher than 0.9) in terms

of group and parsing accuracy. For example, LogPPT yields a

median of 0.99 for GA robustness and 0.94 for PA robustness,

which exceeds the second best log parser (i.e., Drain) by 6.9%,

and 98.5%, respectively. Besides, LogPPT uses the same set of

hyper-parameter values for every dataset in the training phase

and does not require re-adjustment for each dataset. Overall,

the experimental results confirm that LogPPT is robust and

can be applied to different log datasets with low effort.

Our method requires a small amount (K) of labelled data
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART LOG PARSERS WITH 32-SHOT (↑: HIGHER IS BETTER; ↓: LOWER IS BETTER)

AEL LenMa Spell Drain Logram LogPPT
GA (↑) PA (↑) ED (↓) GA (↑) PA (↑) ED (↓) GA (↑) PA (↑) ED (↓) GA (↑) PA (↑) ED (↓) GA (↑) PA (↑) ED (↓) GA (↑) PA (↑) ED (↓)

HDFS 0.626 0.630 0.926 0.998 0.125 3.949 1 0.487 0.858 0.998 0.959 0.452 0.012 0.018 18.665 1 0.902 0.276
Hadoop 0.677 0.422 12.163 0.667 0.242 16.788 0.533 0.196 9.274 0.948 0.439 7.564 0.283 0.370 19.014 0.994 0.895 0.882
Spark 0.415 0.381 3.088 0.869 0.023 10.130 0.920 0.336 4.192 0.905 0.376 2.568 0.282 0.275 7.433 0.999 0.991 0.167

Zookeeper 0.657 0.527 2.430 0.894 0.457 4.472 0.987 0.453 2.450 0.967 0.498 2.304 0.724 0.516 3.928 0.994 0.990 0.338
BGL 0.491 0.410 4.288 0.316 0.154 7.929 0.850 0.329 5.952 0.955 0.444 3.958 0.218 0.170 8.954 0.954 0.970 0.233
HPC 0.731 0.698 1.151 0.681 0.671 2.687 0.657 0.532 3.633 0.741 0.672 1.845 0.742 0.679 2.628 0.943 0.947 1.147

Thunderbird 0.650 0.203 13.640 0.943 0.171 7.924 0.856 0.039 12.280 0.960 0.191 13.675 0.129 0.128 15.479 0.679 0.926 0.857
Windows 0.685 0.389 10.475 0.287 0.266 19.132 0.990 0.004 2.961 0.994 0.696 4.705 0.694 0.374 6.413 0.991 0.983 0.461

Linux 0.404 0.239 15.200 0.238 0.132 12.631 0.162 0.109 16.069 0.422 0.194 15.438 0.201 0.185 16.514 0.934 0.949 0.279
Android 0.642 0.559 8.082 0.778 0.722 5.602 0.891 0.241 8.311 0.765 0.730 5.626 0.677 0.428 12.872 0.885 0.767 1.143

HealthApp 0.570 0.175 18.474 0.166 0.289 15.947 0.961 0.152 5.119 0.644 0.241 18.393 0.258 0.263 15.173 1 0.789 2.536
Apache 0.984 0.987 0.189 0.984 0.293 3.524 0.301 0.285 10.275 1 1 0 0.297 0.509 1.658 1 0.994 0.024

Proxifier 0.495 0.506 9.980 0.495 0.506 9.168 0.527 0.478 6.457 0.527 0.527 9.982 0.016 0 27.118 1 1 0
OpenSSH 0.198 0.421 4.193 0.927 0.155 8.744 0.488 0.127 5.888 0.996 0.534 3.539 0.343 0.482 4.654 0.628 0.976 0.119
OpenStack 0.266 0.187 9.822 0.213 0.191 11.199 0.245 0 19.663 0.224 0.187 20.801 0.241 0.112 49.110 0.989 0.907 0.788

Mac 0.583 0.223 18.523 0.648 0.155 20.867 0.724 0.033 23.281 0.711 0.277 20.531 0.551 0.252 21.651 0.780 0.673 8.856
Average 0.567 0.435 8.289 0.631 0.284 10.043 0.693 0.237 8.541 0.797 0.498 8.211 0.354 0.297 14.454 0.923 0.916 1.130

sampled by an adaptive random sampling algorithm as the

training set. Therefore, to evaluate the sensitivity of our

proposed LogPPT to the amount of labelled data, we conduct

an experiment using different numbers of training log messages

(i.e., different shots). Figure 5 shows the performance of

LogPPT with different numbers of shots.

Fig. 5. Results of LogPPT with different shots (K)

The experimental results show that the model’s performance

witnesses a severe drop when less data is used for training.

The low results are reasonable since pre-trained models require

task-specific data for better adapting to downstream tasks [36].

However, we observe that LogPPT achieves a good balance

between Group Accuracy and Parsing Accuracy. Also, LogPPT

performs better than baselines in terms of Parsing Accuracy

and Edit Distance even with only four labelled training samples.

Moreover, it is noticeable that LogPPT can consistently achieve

good results when K ≥ 16.

In summary, LogPPT significantly outperforms the existing

approaches in all three evaluation metrics. The experimental

results confirm that LogPPT is capable of recognising log

templates and the corresponding parameters.

3) Accuracy with Unseen Logs: Unseen log events occur

frequently in logs. In this study, we consider the log events

appearing only once in a dataset as previously unseen log

events. LogPPT can accurately recognise the templates and

corresponding parameters of unseen log events, as reflected

by the high Parsing Accuracy. To further evaluate the ability

of LogPPT in parsing unseen logs, we measure the Parsing

Accuracy of LogPPT on unseen log data and compare it with

baseline methods. Specifically, for every dataset, we extract

those log messages whose corresponding log templates only

appear one time based on the ground truth, then calculate the

Parsing Accuracy on these log messages. Table II shows the

results. There are 42.64 unseen log events on average on 16

studied datasets. LogPPT achieves the best accuracy of 0.599

when parsing unseen log data, which exceeds existing log

parsers by 58.9% (LenMa) to 517.5% (Logram).

TABLE II
PARSING ACCURACY ON UNSEEN LOG DATA

#Unseen AEL LenMa Spell Drain Logram LogPPT

Parsing Acc. 42.64 0.335 0.377 0.230 0.372 0.097 0.599

B. RQ2: Runtime Performance Evaluation

Besides effectiveness, efficiency is another critical metric

for log parsers to consider in order to handle large-scale log

data. To measure the efficiency of our proposed LogPPT, we

record the running time it needs to finish the entire parsing

process and compare it with the baseline methods. Specifically,

we conduct this experiment on BGL and HDFS datasets, as

they are relatively large. Figure 6 reports the results.
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Fig. 6. Running time of different log parsers under different volume

We can see that the running time of LogPPT increases slowly

with the increase of log data volume. With the use of GPU

acceleration, our model can perform faster than or comparable

with traditional log parsers. For example, LogPPT takes about

107 seconds to process one million log messages, which is just

slightly slower than Drain (94s), Spell (95s) and AEL (84s)

and much faster than LenMa and Logram (cannot finish within

1,000 seconds).

C. RQ3: Ablation Study

In this section, we evaluate the effectiveness of the major

components and parameters in our proposed model. Specifically,

we exclude the Virtual Label Token Generation module and let

the pre-trained model automatically assign the embedding for

the virtual label token “PARAM”. To measure the contribution

of the Adaptive Random Sampling module, we remove it from

our model and randomly sample the log messages for labelling.

We repeat this random process five times to avoid random bias

and report the average results in Table III.

TABLE III
ABLATION STUDY RESULTS

GA PA ED
Full LogPPT 0.923 0.916 1.130

w/oVirtual Label Token Gen. 0.879(↓5.8%) 0.835(↓8.8%) 3.130(↓177%)

w/oAdaptive Random Sampling 0.890(↓3.6%) 0.704(↓23.1%) 3.602(↓219%)

We can see that LogPPT performs worse in terms of

parsing accuracy and edit distance without Virtual Label Token

Generation and Adaptive Random Sampling modules. For

example, without the Virtual Label Token Generation module,

LogPPT only achieves a parsing accuracy of 0.835, which is

8.8% worse than complete LogPPT, while it can still achieve an

acceptable group accuracy (0.879). The reason is that without

the Virtual Label Token Generation module, the model cannot

find the pivot word that can mostly represent parameters in log

messages. Consequently, many parameters are misidentified,

leading to a worse parsing accuracy and edit distance. On the

other hand, log messages are highly imbalanced under different

log templates. Using a naive random sampling technique

cannot guarantee the quality of the training set. Therefore,

the results significantly decline when we remove the Adaptive

Random Sampling module (23.1% decreasing in terms of

Parsing Accuracy).

In summary, this comparison demonstrates the usefulness

of the proposed Adaptive Random Sampling module and the

Virtual Label Token Generation module of LogPPT.

D. RQ4: Comparison with Different Tuning Techniques

LogPPT applies a novel prompt tuning method (i.e., template-

free prompt [39]), which relaxes the burden of manually select-

ing prompt templates and improves the efficiency compared to

other prompt tuning methods. In this section, we evaluate the

performance of this prompt tuning method. To this end, we

replace our prompt tuning module with four different prompt

tuning methods (introduced in Section II-B) and a fine-tuning

technique. We then compare the performance of LogPPT with

that of the variants.

• FT (fine-tuning): We add a binary classification layer

on top of the pre-trained RoBERTa model and fine-tune

the model to perform log parsing as a binary token

classification problem.

• HardPTM (hard prompt tuning with manual label words):

We use a standard hard prompt [52] with the prompt

template of “[X] [S] is a [MASK]”, where [X], [S], and

[MASK] are the unfilled slots for the input log message,

token, and label respectively. The model learns to predict

the label word at the [MASK] position. In this setting, we

use fixed manual sets of label words, including “[const,
keyword]” for keyword tokens and “[variable, parameter]”
for parameter tokens.

• HardPTS (hard prompt tuning with soft label words): We

use the same standard hard prompt template as the above

setting. However, we use trainable tokens [53] as the label

words for this setting.

• SoftPTM (soft prompt tuning with manual label words): In

this setting, we follow recent works to use a soft prompt-

template of “[X] [S] [SOFT] [SOFT] [SOFT] [MASK]”,

where [X], [S], and [MASK] are the unfilled slots for the

input log message, token, and label respectively. [SOFT]

is a trainable token. The embeddings of these [SOFT]

tokens are optimized during the tuning stage. We use

manual label word sets for this setting as in HardPTM.
• SoftPTS (soft prompt tuning with soft label words): We

use the same soft prompt template of “[X] [S] [SOFT]

[SOFT] [SOFT] [MASK]” as in the SoftPTM setting. For

label words, we adopt the same HardPTM setting to use

trainable tokens [53] as the label words.

Table IV shows the results. We can see that LogPPT with

our proposed prompt tuning method achieves the best results

among all studied methods. For example, with 16shot setting,

LogPPT outperforms others by 6.0%-74.5% in terms of Parsing

Accuracy. Our proposed method significantly outperforms other

prompt tuning methods because it can leverage both semantic

and position information of tokens in log messages. Standard

prompt tuning methods overly focus on leveraging the semantic
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TABLE IV
COMPARISON WITH DIFFERENT TUNING METHODS

4shot 8shot 16shot 32shot

GA PA ED GA PA ED GA PA ED GA PA ED

FT 0.69 0.70 5.98 0.88 0.74 3.56 0.85 0.84 2.09 0.91 0.91 1.23

HardPTM 0.54 0.54 6.75 0.64 0.62 4.12 0.69 0.64 3.57 0.68 0.68 2.71

HardPTS 0.48 0.44 10.08 0.57 0.51 8.83 0.54 0.51 8.47 0.67 0.67 3.27

SoftPTM 0.56 0.52 6.63 0.54 0.61 5.05 0.54 0.55 8.26 0.66 0.65 5.38

SoftPTS 0.29 0.24 20.34 42 0.46 9.40 0.46 0.48 7.30 0.58 0.64 5.94

LogPPT 0.76 0.73 5.66 0.88 0.83 2.56 0.90 0.89 1.51 0.92 0.92 1.13

meaning of a token and overlook the contextual information

which is important in log parsing. Fine-tuning, on the other

hand, can achieve better results than standard prompt tuning

because it can use the positional information during the training

stage. With more labelled training data, fine-tuning can achieve

quite similar results with LogPPT.
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Fig. 7. Parsing time of different tuning methods

Next, we evaluate the parsing time of different tuning

methods. As shown in Figure 7, the parsing time of LogPPT

and fine-tuning approach is similar because they only need

one-pass decoding to parse one log message. On the other hand,

other prompt tuning methods need to enumerate all tokens in a

log message which is a time-consuming process. For example,

with soft prompts, the model cannot finish parsing one million

log lines within 1,000 seconds.

In summary, our proposed method is more effective and

efficient compared to other tuning techniques and can achieve

high accuracy with a few shots of training data.

VI. DISCUSSION

A. Why does LogPPT Work?

There are several reasons that make LogPPT perform

better than the related approaches. First, LogPPT predicts

keywords and parameters using the semantic information from

log messages by tuning a pre-trained language model. Thus,

compared to traditional methods using only superficial features,

LogPPT is able to indicate the keywords or parameters more

precisely. Besides, LogPPT does not require domain-specific

knowledge to define regular expressions for each dataset, thus

is easy to be applied to a new log dataset.

Second, compared to other few-shot learning techniques,

LogPPT applies an effective and efficient prompt tuning

method, which can avoid the complex design for prompt

instructions and also boost the few-shot performance. LogPPT

leverages both semantic and positional information of to-

kens in log messages, thus can handle the noise in log

data compared to other prompt tuning methods. For exam-

ple, the log message from Proxifier, “open through proxy
proxy.cse.cuhk.edu.hk:5070”, contains two “proxy” to-

kens with different roles. Standard prompt tuning methods

fail to distinguish these tokens and predict the same label for

them. The reason is that standard prompt tuning methods only

consider the semantic meaning of tokens but ignore the position

information, which is important for log parsing. In contrast,

our method utilizes both semantic and position information of

a token in log messages and achieves high parsing accuracy

(100% parsing accuracy).

B. Threats to Validity

We have identified the following major threats to validity.

Data Quality. In this paper, we used public log datasets for

our evaluation. The ground truth templates of all log messages,

including log templates and corresponding parameters, are

provided within the datasets. Although these datasets are

commonly used by many related works [11], [14], [20], they

may also contain a small proportion of errors. To reduce

this threat, we leverage the latest version of the benchmark

datasets [18] that are corrected with automatic and manually-

defined rules.

Tool Comparison. In our evaluation, we compared our

results with related approaches. The approaches achieved

the best results in a recent benchmark [11] and are used in

both industry and academia. We adopt the implementations

from their replication packages. We apply the parameters and

settings (e.g., number of log templates, similarity threshold,

etc.) optimized by the previous work [11].

Labelling Effort. Our proposed method relies on a small

number of labelled log data. To reduce the labelling effort, we

propose to use an Adaptive Random Sampling algorithm to

select a diverse set of K log messages (K from 4 to 128) and

attain the templates from user feedbacks.

VII. RELATED WORK

Log Analysis with Language Models: Log analysis is a

research area that has attracted lots of attention due to its prac-

tical importance. Typical applications of log analysis include

anomaly detection [1], [54], [55], [56], failure prediction [7],

[8], root cause analysis [5], [6], etc. Recently, inspired by

the success of pre-trained models in NLP, many studies have

been proposed to apply pre-trained language models to log

analysis. SwissLog [33] and NeuralLog [16] utilize the pre-

trained BERT [31] model for log-based anomaly detection.

Ott et al. [57] studied the use of different pre-trained models

such as BERT [31] and XLNet [58] for log anomaly detection.

Setianto et al. [59] proposed to fine-tune the GPT2 [45] model

for log parsing.
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Data-driven Log Parsing: Log parsing has become an active

research topic in recent years [12], [13], [20], [60]. Recently, to

address the limitations of traditional log parsers and improve the

parsing accuracy, some approaches [34], [19] proposed to use

token classification for log parsing. LogStamp [34] converts the

log parsing task into a sequence labelling problem. It leverages

the BERT [31] model to classify words in log messages. These

approaches, however, adopt a traditional log parser to generate

pseudo labels for log messages as the training data, which can

introduce many noises in training data. Liu et al. [19] proposed

UniParser, which is a unified log parser for heterogeneous log

data. UniParser is trained with labelled data across multiple

log sources to capture the common patterns of templates and

parameters. Although effective, UniParser requires a noticeable

amount of labelled data to train a classification model, which

is not always available in practice. Besides, UniParser requires

handcrafted rules to split raw log messages into tokens, which

is not suitable to apply on some special dataset [19].

Our LogPPT can effectively leverage semantic information

from a few labelled data by using a pre-trained language model.

LogPPT does not require any domain-specific knowledge to

pre-process log data, thus can adapt to new log dataset with

low effort. Besides, by using a novel prompt tuning method,

LogPPT can effectively learn the semantic patterns from a few

labelled data.

VIII. CONCLUSION

Log parsing is the foundation step to enabling automated

log analytics. To overcome the limitations of existing log

parsers, we propose a log parser with prompt-based few-shot

learning, namely LogPPT, to capture the patterns of templates

and parameters. LogPPT utilises a novel prompt tuning method

to recognise keywords and parameters from a few labelled log

data selected by an adaptive random sampling algorithm. We

have evaluated LogPPT on public log datasets. The results

show that LogPPT is effective and efficient, outperforming

the state-of-the-art log parsers. In the future, we will deploy

LogPPT in a production environment to further evaluate its

scalability and effectiveness in practice.

Data Availability: Our source code and experimental data

are publicly available at https://github.com/LogIntelligence/

LogPPT.
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