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Abstract—We propose a simple yet a novel approach to
improve completion in domain modeling activities. Our approach
exploits the power of large language models by using few-shot
prompt learning without the need to train or fine-tune those
models with large datasets that are scarce in this field. We
implemented our approach and tested it on the completion of
static and dynamic domain diagrams. Our initial evaluation
shows that such an approach is effective and can be integrated
in different ways during the modeling activities.

Index Terms—language models, few-shot learning, prompt
learning, domain modeling, model completion.

I. INTRODUCTION AND MOTIVATION

Recent developments in deep learning-based language mod-

els (LMs) open a world of possibilities to automate and assist

software specialists in software development and maintenance

tasks. At the implementation level, large code bases allow us

to leverage these language models by pre-training them to have

good code representations and by fine-tuning them on software

engineering specific tasks.

These opportunities are, however, limited when dealing

with early software development phases such as analysis and

design. Datasets are scarce, and when available, they are not

large enough to pre-train or fine-tune deep-learning models.

For software modeling activities, several contributions were

proposed to circumvent the lack of large datasets. The goal of

these research contributions is to recommend domain concepts,

their features, and relationships during modeling activities1.

Di Rocco et al. [1] proposed an approach based on graph

kernels that only need a small-size dataset for training. Al-

though the results were promising, the quality of the recom-

mended elements remains too low to be used in real settings.

Similarly, Weyssow et al. [2], used such model/metamodel

datasets to train an LSTM neural network. Here again, the

authors obtained limited results, especially when applied to

the iterative construction of a metamodel. Saini et al. [3]

proposed a bot to assist modelers with the creation of domain

models from requirements expressed in natural language using

a combination of NLP techniques. Although their results show

that the bot can be useful, they did not exploit LLM, which

1Note that “deep-learning/language model” and “software model” do not
refer to the same type of model. To avoid confusion, in this work, each time
we refer to a deep-learning or language model (LM), we always refer to it as
such, and never as “model” alone.

we believe will have a positive impact in predicting new mod-

eling elements. From another perspective, Capuano et al. [4],

exploited the available large code bases to reverse-engineering

a set of models to train a RoBERTa language model. The

results are acceptable, but the reverse-engineered models on

which the authors had to rely for training led to suggestions

that reflect implementation aspects rather than the modeled

domains. With the goal of exploiting knowledge captured in

general and specific natural-language documents, Burgueño

et al. [5] used these documents to train language models to

suggest model completions. We believe that exploiting natural-

language sources is a good idea to overcome the scarcity

of the data to exploit deep-learning to assist in modeling

activities. However, this work requires to train a language

model from scratch for each specific domain, which remains

a challenging problem in many scenarios. There are existing

models that have been used for different applications such as

code completion. An example of these is CoPilot [6], which

is specialized in generating and completing code by providing

suggestions and auto-completing phrases. This highlights the

versatility of language generation models and their potential

to be applied in various tasks.

In this paper, we propose the novel idea of exploiting pow-

erful left-to-right LLMs with the aim of completing domain

models instead of code.

To this end, we use few-shot prompt learning, which allows

us to exploit these LLMs without having to train or fine-tune

them on a specific domain or task.

For example, if the goal is to use a LLM to generate the

name of the capital of a given country, we need to prepare a

prompt where we first provide the LM a description on how

to reply to our queries, then we add relevant labeled samples

such as two countries and their corresponding capitals (two

shots). Finally, we give the country for which we want the

LM to provide its capital, i.e., autocomplete. Figure 1 gives

an overview on how to use LLM with prompt learning applied

to this example of countries and capitals. Note that apart from

being an autocomplete engine, these language models are also

pattern matching and pattern generation engines. This is why

we need to provide not only information about the task to

perform but also the pattern that we want them to replicate.

As our example shows in Figure 1, the generated text could

include further information. For instance, Japan => Tokyo
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has also been generated, which is not of our interest. To

deal with this behaviour, properly transforming queries into

prompts and results into modeling elements is an essential

part of the approach.

Fig. 1. Explanatory example

We specifically take advantage of GPT-3, which is one of the

most powerful LM—it contains 175 billion parameters [7]—,

to represent most of the existing general concepts to support

software specialists when modeling. To adapt the semantics

of the general concepts represented in GPT-3 to the semantics

of modeling formalisms, we use two semantic mappings: one

that takes the model under construction (i.e., the input to our

system) and builds the prompt, and another one that obtains

model completion suggestions from the text produced by the

language model. These semantic mappings rely heavily on the

targeted modeling formalisms.

In this paper, we illustrate our approach with two examples

coming from two categories of modeling languages: static

models, i.e., UML class diagrams; and dynamic models, i.e.,

UML activity diagrams. We propose an initial implementation

of this idea and a preliminary evaluation.

II. PROMPT-LEARNING FOR MODEL COMPLETION

A. Approach Overview

The main goal of our approach is to complete a model

under-construction (a.k.a. partial model) by suggesting related

elements. Given a partial model, we apply a semantic mapping,

i.e, we construct a text representation that will serve as

input to GPT-3. We query GPT-3, which returns a textual

output that follows a certain pattern. Then, we finish by

applying another semantic mapping—in particular, a parsing—

to the obtained text and extracting relevant model elements by

applying suitable text transformations.

B. Static diagram completion

Using static diagrams for domain modeling usually consists

of representing the domain entities, their properties or features

and their relationships. For example, the UML class diagrams

shown in Figure 2 is a partial description of a banking system.

The upper part represents the partial domain model that is

already defined by the user.

We focus first on how we design our completion system

to suggest entities, i.e., new classes. We create the prompt

using some existing diagrams of unrelated domains. From

Fig. 2. Example of domain model: Bank class diagram

these diagrams, we extract pairs of related classes and, to

follow a certain pattern where we introduce the relationship

between two related elements, we represent them between

square brackets. Figure 3 shows the few-shots that we provide

for our example. Then, we build a query from the partial

domain model. To do this, we select between 2 and 4 pairs of

related classes, put the classes names in square brackets and

add them to the prompt. In Figure 3, under “Generated text”

we can observe in bold the text that has been generated for our

example. Furthermore, our engine follows a ranking strategy

to suggest new elements. We query GPT-3 several times with

different prompts, where all the prompts have the same shots

but different queries, each query containing a different subset

of model elements from the partial model. As a result, we

obtain for each prompt a set of suggested concepts. Then, all

the obtained concepts from the different prompts are ranked

by its frequency from higher to lower. Only those concepts

with higher frequency are considered.

Prompt:
Generate related concepts:
hospital: [Nurse, Staff], [Department, Room], [Nurse,patient],
[Nurse,department]
reservationSystem: [SpecificFlight, GeneralFlight], [Airport, City],
[passenger, plane], [trip, passenger], ...
... (Three more shots)
Bank: [bank, client], [client, clientcollection]
Generated text:
Bank: [bank, client], [client, clientcollection], [loan, clientcollec-
tion], [loan,deposit],[account, balance], [account, transaction]

Fig. 3. Prompt and generated text for class names and association prediction
to complete the Class Diagram of Fig. 2

We apply a string-searching algorithm on the generated text

to extract relevant class names and the association that exist

between them; we also remove spelling errors and noisy data

such as digits, which are usually not part of domain models. In

our example, after this step, we obtain that potential missing

classes (and associations between them) are Transaction,
Balance, Deposit, Account and Loan. These classes

are suggested to the user as shown at the bottom part of

Figure 2 with a white color. One can notice that for this
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example all the suggestions are closely related to the banking

domain that is being modeled.

Given a partial model, to generate prompts for attribute

completion, we concatenate the package name and existing

class names with their attributes in square brackets, ending

with the class for which we are finding potential attributes.

Like we do for classes, we use a frequency based ranking

function that takes as input all the text generated by GPT-3

for different prompts. Then, we generate attribute suggestions

using those concepts which are at the top of the ranking.

Figure 4 illustrates the prompt and resulting text for the class

Client of Figure 2. We have obtained name, address
and id as potential relevant attributes.

Prompt:
Generate missing attributes for each class in this class diagram:
package company: employee: [id, name, lastName, occupation];
manager: [id, name, department]; company: [name, holding] =>
employee: [id, name, lastName, occupation, department, experience,
revenue]; manager: [id, name, department, team, revenue]; company:
[name, holding, address, website]
package bank: bank: [id, name]; clientCollection: [amount]; client:
[card]
Generated Text:
package bank: bank: [id, name]; clientCollection: [amount]; client:
[card, name, address, id]

Fig. 4. Prompt and generated text for attribute completion.

Regarding the suggestion of association names, we design

our prompt as follows; from unrelated diagrams, we select

pairs of classes that have an association between them. Each

pair of classes is used to build a shot by concatenating the

name of the classes and the name of the association.

There are different ways of using these prompts—and there-

fore suggestions—for static diagram completion. We could

provide suggestions to the modeler at each iteration of the

modeling activity (i.e., one prompt at a time); or after the

modeler has completed their diagram to suggest potentially

missing elements (i.e., with the combination of the suggestions

obtained from many prompts).

C. Dynamic diagram completion

Since structural diagrams do not define sequences, any

fragment can be used to generate the prompts to complete

a diagram. In the case of dynamic/behavioral diagrams, such

as activity diagrams [8], there are strong precedence/sequence

constraints to consider (e.g., to represent time), as it can be

seen in Figure 5. Hence, to apply prompt learning, we need

to define shots and prompts in a way that they preserve those

constraints.

In this section, we present how prompt learning can be

applied for the completion of activity diagrams. Once again,

we need to map the semantics of activity diagrams to a pattern

that a LLM such as GPT-3 is able to understand and for

which it provides meaningful results. To deal with precedence

constraints, we designed our prompts and parameterised them

Mapping

start

end
=>

condition1 / condition2 => if condition1 {...} else {...}

action (as text)
TABLE I

SEMANTIC MAPPING FOR ACTIVITY DIAGRAMS

to predict the next actions in a partial sequence2. To build the

prompts, we defined simple transformation rules to match the

elements of the activity diagram to the appropriate keywords

that conform the prompt that we send to GPT-3 as Table I

shows. Note that so far, we have only focused on a subset of

the activity diagram language.

To illustrate our idea, we introduce the example of an online

shopping workflow. Figure 5 shows, in the upper part, the

partial activity diagram that is already defined by the user.

To create our prompt, we design 3 shots using real activity

diagrams extracted from a public repository [9], which have

been mapped using the rules described above. Figure 6 rep-

resents the prompt for this example and the GPT-3 generated

text.

Fig. 5. Example of activity diagram: Online Shopping

Prompt:
Complete the workflow:
Ticket Vending Machine: start => request trip info => provide trip
info => process trip info => payment request => provide payment
Info => process payment => pay with card / pay with cash => if
with card {authorize card payment} => end.
... (two more shots)
Online Shopping: start => search item => found / not found => if
found {view item => buy / not to buy}}=>
Generated Text:
if buy {select item => add to cart => checkout=> provide shipping
information => process payment => order placed => end} else
{continue shopping => end}} else {search}.

Fig. 6. Prompt and generated text for the Activity Diagram of Fig. 5

2This implies that we need to set the GPT-3
maximum_number_of_tokens hyperparameter to a relatively low
number—in our experiments it has been set to 50.
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After mapping the generated text into model elements,

the elements that Figure 5 shows in white represent the

completion elements that we obtain. The resulting completions

are considered good from two different points of view. From

a conceptual point of view, it fits perfectly the domain being

modeled; and from a syntactic point of view, the completion

suggested comply with the activity diagram syntax.

III. PRELIMINARY EVALUATION AND DISCUSSION

The work presented in this paper is an initial attempt to

improve the completion of software models. So far, we have

evaluated our idea on domain models represented as class

diagrams from a public repository.

A. Setup

We followed a manual data sampling methodology, which

consisted of selecting 30 domain models from a larger dataset

called ModelSet [10]. The goal was to have a dataset with

samples of different sizes and containing domain models cov-

ering multi-disciplinary domains such as education, finance,

entertainment, etc. The manual work was required given the

fact that the dataset contained numerous models representing

source code and therefore containing low-level implementation

details.

Based on our experiments, empirically, we decided to use

the GPT-3 model text-davinci-002 as it consistently produced

results that were comparable or superior to other available

models. While our approach utilizes a tuning-free prompting—

which means the engine generates answers directly without

adjusting the parameters of the pre-trained language model

taking into account only the provided few shots—we still have

to set certain hyper-parameters. One such hyper-parameter is

the temperature. In general, GPT-3 tends to select words

with a higher likelihood of occurring when the temperature

is lower. To avoid limiting the search space, we set it be-

tween 0.70 and 0.90, as this range provides better results for

more creative completions. Another important parameter is the

maximum_number_of_tokens that can be generated by

the model. In our approach, we set this parameter differently

depending on the task. For class names and attribute predic-

tions, we set it to 20 as the goal is to generate several words

and complete missing concepts, whereas for association name

predictions, we set it to 1 as the goal is to generate one precise

word.

Furthermore, we have automated the completion process by

automatically simulating the behaviour of a modeler using

our proof of concept tool. A replication package with the

code of our tool and experiments can be found on our Github

repository [11].

1) Class names suggestions: To evaluate whether our ap-

proach leads to an effective suggestion of new classes, from

each model Mi, we took 20% of its elements as the already

defined partial diagram M′
i and we simulated an incremental

design process starting from M′
i. First, we performed a first

round (R1) of completion suggestions, then we validated

the suggested results manually adding to the model under-

construction Mi’ those which were semantically equivalent to

those elements in Mi. The accepted elements were included

in the partial model M′
i, resulting in the partial model M′′

i .

Then, we performed a similar second round (R2) starting

from the partial model M′′
i . As mentioned before, in each

round, we generated three prompts with which we queried

GPT-3, each incorporating a varying subset of concepts from

the incomplete model. Then, we employed a frequency-based

ranking algorithm to determine the final suggested class name.
2) Attributes suggestion: To assess the effectiveness of our

approach when suggesting new attributes within a class, we

have selected randomly 212 classes from our dataset, have

removed 75% of their attributes and have generated attribute

completions for them. Note that this means that for classes

with three or less attributes, we removed all of them, which

was the case for most of the classes. Once we obtained

the completion suggestions from our engine, we manually

approved those which are either exact matches or semantically

equivalent elements to those in the ground-truth model.
3) Association names suggestion: We finally evaluate

whether our approach is able to suggest meaningful association

names. We extract from our dataset 40 pairs of concepts,

where each pair contains the names of two associated classes.

Then, we query 3 times our engine to suggest a name for

each association, each attempt with the same prompt but a

different temperature. Then, we use a frequency-based ranking

function to suggest the final association name. We validated

manually the output of our engine and approved those which

are either exact matches or semantically equivalent to those in

the ground-truth model.

B. Results

1) Class names suggestion: As explained previously, we

collect results for two successive steps. Table III-B1 sum-

marizes the precision and recall metrics for both steps. We

observed that the Recall improved from R1 to R2 while the

Precision decreased slightly. This is due to the fact that the

number of correctly suggested elements increases from one

round to the next, while the number of incorrect elements

increases, too.

Precision R1 Precision R2 Recall R1 Recall R2
avg 0.57 0.56 0.29 0.45
std 0.26 0.24 0.18 0.25

TABLE II
RESULTS EVALUATING CLASS NAMES PREDICTION

We also observed that domain models that resulted in the

best results (recall between 0.8 to 1) were addressing very

common domain/topics used by humans in natural language

such as banking, university and library. Yet, models whose

domains contained information that falls further from natural

language—such as a model whose package name was AUni—
resulted into poor results (a recall between 0 and 0.1).
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2) Attributes suggestion: For attribute suggestions, we eval-

uate the recall, defined as the ratio of the ground-truth at-

tributes being found in the Top-N recommended items. In the

selected domain models, most classes contain a very limited

number of attributes, thus we are only considering the recall

metric to check whether we are able to obtain these missing

attributes.

The average recall is 0.7 with a standard deviation of 0.4,

which can be considered a promising result.

3) Association names suggestion: An interesting metric to

evaluate these suggestions is the accuracy, defined as the ratio

of correctly predicted association names with respect to the

total suggestions. This is, unlike before, we are no longer

interested in recognizing the relevant elements, but checking

how many times the engine was correct. We have obtained an

accuracy of 0.64, which also seems promising.

IV. DISCUSSION

We proposed a novel approach based on few-shot prompt

learning to enable large language models to solve completion

tasks in modeling activities. We reformulate model comple-

tion as a semantic mapping problem that consists, firstly, in

transforming modeling formalism elements into meaningful

patterns of sequences of tokens to create prompts with learning

shots. Then, we exploit the ability of LLMs to complete

partial sequences following the specified patterns to recover

elements that can be used for the completion. Those elements

are transformed into constructs conforming to the modeling

language syntax and suggested to the modelers. Although

many research contributions were proposed to solve model

completion problems, we do believe that none of them can

be effectively used in a real setting, because of the resources

needed, i.e., large training datasets, and the limited perfor-

mance they offer. We do believe, however, that our approach

can be effective when modeling both static and dynamic

diagrams for two main reasons. Firstly, it does not require

to pre-train or fine tune language models on specific tasks

or domain. Secondly, the used LLMs are trained on a huge

volume of data, which makes it generalizable to many domains

and different concept natures and relationships.

Although our approach shows promising results, it is still

a first attempt and there is room for improvement. Indeed,

when defining a prompt, the elements of the already-defined

partial diagrams have a great influence on the accuracy of

the suggested token. A calibration study is still necessary

to determine the boundaries of the provided existing context

to have the best suggestions. For example, when we added

systematically the package name in the pattern, the results

improved considerably, but we cannot determine whether this

observation is valid only on the used benchmark. Another

consideration that has to be studied is the use of non-natural

language elements such as symbols and digits. In our experi-

ments, their existence generated poor results as these elements

are rarely present in the data used for training LLM. We

believe that a more sophisticated mapping of those elements

would considerably improve the results.

Using LLMs proves to be efficient in modeling formalism

that rely heavily on natural language identifiers. However,

other modeling languages such as Petri nets are definitely

difficult to handle as they involve modeling elements that

cannot be captured by LLMs.

In our approach, we utilize the advanced capabilities of

GPT-3 by OpenAI, a state-of-the-art language model. How-

ever, this makes us rely on third-parties, which could limited

the availability of the service or deny our access to it in the

future. In such case, we should replace GPT-3 with a similar

LLM.

Finally, during the evaluation process of our proof of

concept, we noticed that, when generating suggestions, most

of the time is spent waiting for the responses of GPT-3 after

querying its API. With the goal to improve the user experience,

a caching system helped to speed up the performance of our

implementation by reducing the number of API calls and data

cleaning.

V. CONCLUSION

In this paper we propose an approach to assist modelers

in the domain modeling task. Our approach takes advantage

of large pre-trained models of natural language through the

prompt learning technique. One advantage of our approach is

the ability to target different modeling formalisms by defining

semantic mapping between the formalism constructs and the

natural language concepts. Additionally, the semantic mapping

is illustrated with few examples, i.e., few shots, to help the

language model find good results for a given prompt. We

implemented our approach for both static and dynamic domain

models and we report preliminary results for the former

models.

The proposed approach, although simple to implement, is

powerful and showed promising results. Those results are

possibly even better if we consider the fact that the boundaries

of a domain are broader than the diagrams we considered as

ground truth in our experiments. In fact, some of the suggested

elements, although absent in the considered diagrams that we

used as ground truth, may be relevant for the domains under

consideration. To assess such a claim, we plan to conduct a

user study to better assess the correctness of the suggestions,

but also the usefulness of the completion for the domain

modelers. We also plan to implement a graphical tool for end-

users and assess its usability. Finally, we plan to explore how

different LLMs can improve the results and even how they

can be combined to boost the quality of the suggested model

completions.
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