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Abstract
Active learning, a semi-supervised learning approach, tackles
labeled data scarcity by focusing on the most informative data
points. Traditionally, Sequential Model Optimization (SMO),
a Bayesian optimization technique, has been key in guiding
data point selection for labeling. However, large language
models (LLMs) have emerged, showing impressive generaliza-
tion in minimal or zero-shot scenarios across various domains.
This paper investigates whether LLMs can outperform tradi-
tional SMOmethods in active learning, particularly for tabular
datasets where LLMs are less commonly applied. We explore
three research questions: (1) Can LLMs outperform Bayesian
optimization in active learning with tabular data? (2) How do
LLMs compare to Bayesian methods in runtime efficiency? (3)
Does few-shot learning surpass zero-shot learning in this con-
text? Our findings reveal that SMO continues to outperform
LLMs in active learning, especially with tabular data, where
LLMs, though capable, are hindered by significantly longer
runtimes. Additionally, few-shot learning outperforms zero-
shot learning when LLMs encounter data outside their training
corpus. This study offers a novel analysis of LLM performance
in active learning for tabular datasets, introduces a method of
using LLMs as an oracle in multi-objective optimization, and
provides a comparative assessment against state-of-the-art
SMO. A reproduction package is available online for further
exploration and validation.

Keywords
Do, Not, Us, This, Code, Put, the, Correct, Terms, for, Your,
Paper

1 Introduction
Active learning is a semi-supervised learning approach where
the model actively selects new data points to label, guided by
optimization methods designed to maximize the impact of the
labeled data. This method effectively addresses the challenge
of labeled data scarcity by focusing on the most informative or
uncertain data points, thereby reducing the amount of labeled
data needed to achieve strong model performance.

Traditionally, guided optimization in active learning has
been handled through Sequential Model Optimization (SMO),
a technique rooted in Bayesian optimization. SMO selects
new data points based on calculated likelihoods and prior
probabilities, making it an efficient approach for identifying
the most valuable data to label. However, this method was
developed in a context where models had limited capacity to
generalize from prior data and lacked the ability to effectively
query new samples based on existing information.

The advent of large language models (LLMs) has shifted this
landscape, as thesemodels demonstrate impressive capabilities
in generalizing from minimal examples or even in zero-shot
scenarios across various domains. Given their ability to infer

and generate new information with limited data, it is crucial
to explore whether LLMs can surpass Bayesian methods in the
realm of multi-objective optimization. Testing LLMs against
traditional Bayesian approaches could reveal new insights into
their potential to outperform existing methods, particularly
in settings where data is scarce or highly complex. This ex-
ploration could pave the way for more advanced and adaptive
active learning strategies that leverage the strengths of both
LLMs and traditional optimization techniques.

The research of this paper began with the question can
few shot learning outperform sequential model optimization?.
Few shot lot learning is known to perform well in Natural
Language Understanding tasks which are predominantly text
based, However most of the domains where active learning is
practiced involves tabular data, with a high number of columns
containing numercial data. As shown in the literature review
of this paper a large number of papers have contributed on
the use of LLMs for active learning methods that involve text
based datasets However in this paper we propose a unique
method to assess the potential use of LLMs in active learning
involving tabular datasets.

To assess, we ask three questions:

• RQ1:Are LLMs better than bayesian optimization func-
tions for Active learning involving tabular datasets?
Result
Sequential Model Optimization (SMO) remains the
state-of-the-art in active learning, outperforming lan-
guage models despite their strong generalization ca-
pabilities.

• RQ2:Do language models have very high run times
compared to the bayesian counterparts?
Result
Language models take significantly longer to run,
especially in few-shot settings, compared to acquisi-
tion functions, indicating their meticulous search for
similar rows in the dataset.

• RQ3: Does Few shot learning perform better than zero
shot learning in the context of active learning?
Result
Large language models generally perform well with-
out examples, but in cases where the data wasn’t in
their training, few-shot learning outperforms zero-
shot learning.

In summary the contributions of this paper are:

• An important analysis on the performance of LLMS in
active learning for tabular datasets which was missing
in prior studies [].

• An unique way of using LLMs as an oracle in multi-
objective optimization in tabular datasets.

• Comparision between the performance of LLMS with
the state of the art SMO in active learning.
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• a reproduction package which could be cloned from
Module

The results of this paper are based on the specific LLMs used
in this work. It is well known that each large language model
is designed for a particular purpose—whether for general in-
struction (GPT), code generation (Code Llama), mathematical
tasks (Minerva), etc.And their performance depends on nu-
merous factors like parameter count, training data, and more.
Given these differences and the limited resources available, a
comprehensive comparison of all models is unlikely

2 Related Work
2.1 Active Learning and Bayesian

Optimization
Bayesian Optimization is a powerful method for optimizing
expensive-to-evaluate functions, especially when dealing with
black-box functions where the internal workings are unknown
or too complex to model directly. It is predominantly used in
areas to maximize an objective function given the prior ev-
idence and evidence to get the posterior function (based on
"Bayes theorem"). Examples include hyperparameter optimiza-
tion in machine learning models, optimizing the design of
engineering systems, or even finding the best combination of
ingredients in a chemical process and etc.

𝑃 (𝑀 |𝐸) ∝ 𝑃 (𝐸 |𝑀)𝑃 (𝑀) (1)

It is readily employed in active learning to label new rows
based on previously available/labeled rows using a pool based
sampling strategy. The rows should be categorized into either
"best" or "rest". The Bayesian optimization function is used
to find rows that are highly probable of belonging to either
of these categories. This permits the selection of the next
observation through either exploration (targeting the areas of
uncertainty) or exploitation (targeting the areas that are most
similar).

𝐵 = 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑠 (𝑏𝑒𝑠𝑡, 𝑟, 𝑑, 2) (2)

𝑅 = 𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑠 (𝑟𝑒𝑠𝑡, 𝑟, 𝑑, 2) (3)

• "best" are samples in the desired part of the total set.
• "rest" are samples other than best in the set.
• "r" is the current row for optimization
• "d" is the length of the done set.
• B and R are variables to represent the log-likelihoods
of a row r belonging to best and rest, respectively.

Acquisition functions are used to guide the search for the
rows to the optima of the objective function. It could either
maximum of certain region or high uncertainty or a completely
different objective. The acquisition functions used in the study
are Explore, Exploit and Focus.

• Explore: Explore is used to find regions of space that
are most uncertain with respect to currently available
data. By doing so it ensures to capture data with the

least confidence of all the regions. The formula for Ex-
plore is given by:

𝐸𝑥𝑝𝑙𝑜𝑟𝑒 =
(𝐵 − 𝑅)

(𝐵 + 𝑅) + 𝜖
(4)

• Exploit: Exploit is used to target regions that have high
likelihood of yeilding best regions from the data. Unlike
Explore that targets regions of uncertainty, Exploit uses
prior knowledge to navigate the regions that are likely
to provide best samples. The formula for Exploit is given
by:

𝐸𝑥𝑝𝑙𝑜𝑖𝑡 = 𝐵 (5)
• Focus: Focus is an acquisition function that combines
the principles of Explore and Exploit, adjusting dynam-
ically as the process progresses. The idea is to start by
exploring more when the budget is large and gradu-
ally shift towards exploitation as the budget diminishes,
making the process more efficient. The formula for Fo-
cus is:

𝐹𝑜𝑐𝑢𝑠 =

[
(𝐵 + 1)𝑚𝑖 + (𝑅 + 1)

|𝐵 − 𝑅 | + 𝜖

]𝑛−1
𝑖=0

(6)

2.2 Sampling Methods
• Random: Random sampling strategy is used to pool ran-
dom data from the samples which could be used a effi-
cient baseline to compare with the rest of the strategies
in this list.

• Uncertainty: Uncertainty-based sampling selects data
points for labeling that the model is least certain about,
typically those with the highest prediction entropy
or lowest confidence. This approach aims to improve
model performance by focusing on the most ambiguous
cases.

• Diversity: Diversity-based sampling selects data points
that are different from those already chosen or labeled,
ensuring a wide variety of examples. This strategy helps
themodel learn from a broad spectrum of data, reducing
the risk of over-fitting to specific patterns.

• Similarity: Similarity-based sampling selects data points
that are most similar to the already labeled or selected
examples. This method leverages the assumption that
similar instances can provide additional useful informa-
tion for refining the model’s performance in familiar
regions.

2.3 Active Learning and Language Models
Zero Shot and Few Shot learning with language models are ex-
tremely popular given the models ability to generalize through
seen and unseen tasks. [20] presents a case by employing LLMs
as a labeling oracle in active learning for text based datasets.
As briefed in [] the major sampling strategies used in active
learning are Uncertainty, Diversity and Similarity.

[20] uses a similarity based sampling strategy to actively
label text based tasks through the use a small language model
to label and a large language model to scrutinize the labeling
which has yielded the highest performance among all the
approaches.

https://github.com/lohithsowmiyan/lazy-llm
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2.4 Ranking Studies
A constant question among researchers is whether transformer
based models can be readily employed in active learning. Stud-
ies from [6] have proven that transformers could only achieve
limited performance compared to tree basedmodels for tabular
datasets which could be attributed to various reasons like con-
verging on unimportant features etc. In July 2024 we searched
scholar.google.com for the conjunction of "active learning"
and "large language models" published after 2020.

"active learning" "large language models"

From that list, we sorted the top 100 pages of results by
citations and found a knee in that curve at the 185 point. This
reduced our population of papers down to 45. This list was
then skimming the papers looking for any reference to:

• Comparison to non-LLMs
• Presentation of some acquisition function;
• Any techniques, other than random selection, for ini-
tializing the population of labelled examples;

• Testing on tabular data
• multi-objevtive optimization
• Testing on more than or equal to T datasets (T = 5)

This took us to 14 papers. After reading the titles and abstracts
of those papers, and skimming the contents of the potentially
interesting papers and snow balling through important papers,
we found five other potentially interesting papers, which lead
us to the 19 papers of Table 1.

The key observation made from the survey is that majority
of the studies explored active learning using llms for text based
datasets, However there was hardly any study that presented
the capabilities of LLM few shot learning for active learning.
Despite results from [6] proving that neural models struggle
to achieve good results for tabular dataset. RQ1 addresses this
issue and the remaining sections of these paper explore further
on the few shot and zero shot capabilities of LLMS in handling
tabular data.

3 Experimental Design
This experiment compares the performance of large language
models, llama3(8B) and phi3-mini(3.8B) (under both zero shot
and few shot learning strategies) with the state of the art
Bayesian optimization based acquisition functions (Explore,
Exploit and Focus) across 8 tabular regression datasets. These
datasets are part of the 49 datasets used in https://github.com/
timm/ezr. The description of these datasets could be found in
table 2.

The performance along with the runtime of all the treat-
ments are reported via statistical tests accross various budgets.
Due to resource limitations, we have restricted the budget of
both llms having a combination of budgets (20, 30) and both
the models sharing a common value of 10 repeats per budget.
Whereas the treatments based on acquisition functions are
allowed with a wider range of budget (20, 25, 30, ..., 60) with
20 repeats per budget.

3.1 Algorithm for LLM Based Optimization

This code defines a few shot learner function that utilizes a
simulated annealing approach for selecting and ranking data
rows based on their "distance to heaven" (d2h). The learner
function comprises three main sub-functions: _ranked for sort-
ing rows by their d2h values, llm_guesser for using a language
model to predict the best unlabeled row, and _smo1 for itera-
tively selecting and refining the set of done rows. The primary
goal is to improve the labeling of data by leveraging both
distance-based ranking and model predictions.

3.2 Prompt Template
The model performance greatly depends on the input we pro-
vide it with. So inorder to exctract the highest performance
from a languagemodel the prompts must be carefully designed.
In this work we have designed a generalized prompt template
that could be applied to all the 8 datasets in ?? for both few
shot and zero shot learning.

3.2.1 Few Shot Prompt. A few-shot prompt should be care-
fully structured to guide the model in understanding its role,
the task at hand, and the expected response format. The prompt
is divided into three key sections.

The first section is the System Message, where the model is
instructed about its role and provided with meta-information
about the task. This section sets the context, specifying what
the model is expected to do, such as acting as an assistant, eval-
uator, or any other defined role. It also includes any relevant
constraints or guidelines that the model should follow, such
as the tone, length, or type of response required. The System
Message helps ensure that the model’s outputs are consistent
with the desired outcome and that it adheres to any specific
rules throughout the interaction.

The second section is the Examples Section, which contains
a set of N examples that demonstrate the exact format of input
and output expected during the task. These examples should be
representative of the types of queries the model will encounter
and should clearly illustrate the pattern that the model needs
to learn. The examples serve as a guide, helping the model
understand how to process the input and generate the correct
output. By providing diverse yet consistent examples, this
section helps the model generalize from the few provided
cases to similar scenarios in future queries.

The final section is the Human Message, which contains
the current query that needs to be addressed by the model.
This query should follow the same format as the examples
provided earlier to maintain consistency. The model uses the
context and patterns learned from the System Message and
Examples Section to generate an appropriate response to the
query presented in the HumanMessage. This structure ensures
that themodel has all the necessary information to perform the
task accurately, with a clear understanding of what is expected
in its responses. By combining a well-defined role, illustrative
examples, and a consistent query format, the few-shot prompt
effectively guides the model in delivering precise and relevant
outputs.

3.2.2 Zero Shot Prompt. A zero-shot prompt template is quite
similar to a few-shot prompt template, but it omits the example
section where the model is shown examples of input-output

https://github.com/timm/ezr
https://github.com/timm/ezr
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Table 1: Highly cited Active Learning with Language Models studies

Ref Year Citations A = Compare
to Non-LLMs?

Data =
Tabular?

Acquire Initialization =
Guided?

Multi-Objective
Optimization?

T=5 Datasets? No details on
sample size?

Row counts (max=6)

here 2024 0 ✓ ✓ various ✓ ✓ ✓ ✓
[12] 2024 12 ✓ ✓ Similarity ✓ ✓ ✓ × 6
[1] 2024 0 ✓ ✓ Adaptive × ✓ ✓ × 5
[20] 2023 9 ✓ × Similarity ✓ ✓ ✓ × 5
[3] 2010 3237 × ✓ Uncertainty × ✓ ✓ × 4
[4] 2021 496 ✓ × Similarity ✓ ✓ × × 4
[19] 2022 450 ✓ ✓ - × ✓ ✓ × 4
[9] 2022 355 × × Diversity ✓ ✓ ✓ × 4
[18] 2022 130 × × Similarity ✓ ✓ ✓ × 4
[7] 2021 2035 - ✓ - × ✓ ✓ ✓ 3
[15] 2021 76 × × Uncertainty × ✓ ✓ × 3
[8] 2020 415 - × Diversity × ✓ ✓ ✓ 3
[21] 2020 173 × × Adaptive × ✓ × × 2
[2] 2022 268 × × - ✓ × ✓ ✓ 2
[17] 2023 250 × × - ✓ - ✓ ✓ 2
[11] 2023 257 × × - ✓ × × ✓ 1
[5] 2020 621 × × Similarity × × × × 1
[13] 2021 288 × × - × ✓ × ✓ 1
[10] 2024 0 × × Uncertainty × ✓ × × 1
[16] 2020 392 - × - × × × ✓ 0
[22] 2021 290 - × - × - × ✓ 0
[14] 2020 208 × × - × × × ✓ 0
Column count (max=21): 5 5 5 13 12 9

Figure 1: Code for LLM Based optimization
1 def learner(i:data):
2
3 def llm_guesser(current: row , done: rows) -> row:
4 cut = int(.5 + len(done) ** 0.5)
5 best = clone(i, done[:cut]).rows
6 rest = clone(i, done[cut:]).rows
7 best = [b[:len(i.cols.x)] for b in best]
8 rest = [r[:len(i.cols.x)] for r in rest]
9 messages = load_prompt(args.dataset).getTemplate(best , rest , current [:len(i.cols.x)], cols = i.cols.x)
10 prompt = model.tokenizer.apply_chat_template(messages , tokenize=False , add_generation_prompt=True)
11 model.model.config.pad_token_id = model.model.config.eos_token_id
12 outputs = model(prompt , max_new_tokens =256, do_sample=True , temperature =0.5, top_p =0.9)
13 print(outputs [0]['generated_text ']) if args.intermediate else None
14 if "best" in outputs [0]['generated_text '][len(prompt):]. lower(): return current
15 return None
16
17 def _smo1(todo:rows , done:rows) -> rows:
18 "Guess the `top` unlabeled row , add that to `done `, resort `done `, and repeat"
19 count = 0
20 for k in todo:
21 count += 1
22 if len(done) >= args.last: break
23 top = llm_guesser(k, done)
24 if(top == None): continue
25 btw(d2h(i,top))
26 done += [top]
27 done = _ranked(done , top , count)
28 return done
29
30 i_sampled = random.choices(i.rows , k = k)
31 return _smo1(i_sampled[args.label:], _ranked(i_sampled [:args.label]))

pairs. Instead, the model is directly instructed to perform the
intended task based solely on the information provided in the
System Message and the Human Message.

The System Message in a zero-shot prompt still plays a
crucial role in setting the context for the model, defining its
role, and providing any necessary meta-information about
the task. This section ensures that the model understands the

nature of the task, the expected format of the response, and
any specific constraints or guidelines it should follow.

In a zero-shot prompt, since there are no examples to guide
the model, the Human Message becomes the focal point. This
section presents the query or task that the model needs to
address. The Human Message should be clear, concise, and
well-structured, as the model will rely entirely on this infor-
mation to generate its response. Without prior examples, the
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Table 2: Dataset Description

Dataset Name #Rows #Indep. vars #Dep. vars

SS-A 1343 3 2
SS-B 206 3 2
SS-D 196 3 2
SS-X 86058 11 3
auto93 398 5 3

X264-Measurements 1152 16 1

Figure 2: Few shot prompt for LLM Based Optimization

"System message" : You are an excellent assistant.you need to evaluate the
specifications of a car and answer in one word if the example falls into best
or rest categories. Here are the attributes provided for each car in the same
order: Clndrs, Volume, HpX, Model, origin.
"Examples"
"Input" : [4, 97, 46, 73, 2]
"Output": Best

"Input" : [4, 79, 67, 74, 2]
"Output": Best

"Input" : [8, 360, 175, 73, 1]
"Output": Rest

"Input" : [8, 440, 215, 70, 1]
"Output": Rest
"Human message" : [6, 350, 215, 70, 1]?

Figure 3: Zero shot prompt for LLM Based Optimization

"System message" : You are an excellent assistant.you need to evaluate the
specifications of a car and answer in one word if the example falls into best
or rest categories. Here are the attributes provided for each car in the same
order: Clndrs, Volume, HpX, Model, origin.

"Human message" : Based on the above attributes, answer in one word if
the following example is similar to best or rest [6, 350, 215, 70, 1].

model interprets the task based on the instructions given and
produces an output that aligns with the specified requirements.

3.3 Statistical Analysis
When comparing the results of language models to the acqui-
sition functions, we use a statistical significance test. Signif-
icance test are useful for detecting if two populations differ
merely by random noise. Also, effect sizes are useful for check-
ing that two populations differ by more than just a trivial
amount. For the significance test, we used the Scott-Knott test.
This technique recursively bi-clusters a sorted set of numbers.
If any two clusters are statistically indistinguishable, Scott-
Knott reports them both as one group. Along with the Skott-
Knot test we also report the runtime of every treatment w.r.to
the budget to compare the efficiency of all the treatments.

4 Results
RQ1: Are LLMs better than bayesian optimization functions
for Active learning?

Sequential Model Optimization (SMO) is considered state-
of-the-art in active learning, particularly when it comes to
identifying the next best data point (or row) to label. This

Table 3: Scott-Knot test on Bayesian Optimization and
LLM few-shot results for auto93.csv

Rank Treatment Budget Mean Std Time(s)

0 exploit 50 0.17 0.14 1.96
0 exploit 55 0.17 0.02 2.22
0 exploit 60 0.17 0.09 2.47
0 Focus 60 0.17 0.03 4.86
0 exploit 30 0.19 0.06 1.02
0 exploit 35 0.19 0.12 1.24
1 exploit 40 0.19 0.00 1.47
1 exploit 45 0.19 0.14 1.71
1 Focus 45 0.19 0.10 2.98
1 Focus 55 0.19 0.09 4.14
1 Focus 50 0.19 0.09 3.54
1 Focus 40 0.20 0.07 2.47
2 random 55 0.20 0.06 0.00
3 phi3-mini(3.8B) 30 0.24 0.11 2260.39
4 exploit 20 0.24 0.12 0.60
4 random 60 0.24 0.08 0.00
4 random 40 0.26 0.08 0.00
5 random 45 0.26 0.11 0.00
5 random 50 0.26 0.13 0.00
5 Focus 25 0.26 0.08 1.21
5 random 30 0.26 0.05 0.00
5 Focus 30 0.26 0.09 1.59
5 random 35 0.26 0.08 0.00
5 phi3-mini(3.8B) 20 0.27 0.05 1090.29
5 llama3-8b(8.0B) 20 0.27 0.13 4580.62
5 random 25 0.27 0.08 0.00
5 Focus 35 0.27 0.12 2.01
5 explore 40 0.28 0.17 1.47
6 llama3-8b(8.0B) 30 0.30 0.05 6234.75
6 Focus 20 0.30 0.07 0.86
6 exploit 25 0.31 0.13 0.80
6 explore 35 0.31 0.03 1.24
6 explore 45 0.31 0.03 1.73
6 explore 50 0.31 0.08 1.97
6 explore 60 0.31 0.05 2.55
6 random 20 0.31 0.07 0.00
6 explore 55 0.32 0.05 2.23
6 explore 30 0.33 0.07 1.02
6 explore 25 0.33 0.10 0.81
7 explore 20 0.34 0.11 0.61
7 rrp 10 0.35 0.14 0.21
8 baseline 398 0.55 0.16 0.00

is accomplished through the use of various acquisition func-
tions that guide the selection process. While language models
demonstrate a strong capability in sequentially selecting op-
timal rows, leveraging both their pre-trained knowledge and
their ability to generalize from a few examples, they still do
not reach the performance levels achieved by SMO.

This performance gap is evident in the results presented
in 3 and 4, where SMO consistently outperforms language
models in this context. The structured approach of SMO, which
systematically evaluates and selects the most informative data
points, gives it an edge over language models, which, despite
their flexibility and generalization capabilities, may not fully
capture the specific intricacies required for optimal active
learning performance.

RQ2: Do language models have very high run times? It
can be observed in 3 and 4 that language models have an
average runtime exceeding 1000 seconds for just 10 repeats,
whereas the acquisition functions within Sequential Model
Optimization complete their runs in just a few seconds for



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
Table 4: Scott-Knot test on Bayesian Optimization and
LLM zero shot results for auto93.csv

Rank Treatment Budget Mean Std Time(s)

0 exploit 50 0.17 0.02 1.36
0 exploit 55 0.17 0.02 1.53
1 exploit 60 0.17 0.02 1.71
1 Focus 60 0.17 0.02 3.27
1 exploit 45 0.19 0.00 1.19
2 Focus 45 0.19 0.09 2.08
3 exploit 40 0.19 0.12 1.05
4 Focus 55 0.19 0.09 2.85
5 random 60 0.20 0.05 0.00
5 exploit 35 0.24 0.13 0.87
5 random 40 0.24 0.07 0.00
5 random 55 0.24 0.06 0.00
6 random 50 0.25 0.03 0.00
7 Focus 50 0.26 0.08 2.44
8 Focus 35 0.26 0.11 1.46
8 random 35 0.27 0.06 0.00
9 random 20 0.27 0.07 0.00
9 Focus 25 0.27 0.05 0.85
9 random 45 0.28 0.06 0.00
9 random 30 0.30 0.15 0.00
9 Focus 40 0.30 0.06 1.75
9 exploit 20 0.31 0.09 0.43
9 random 25 0.31 0.06 0.00
9 exploit 30 0.31 0.12 0.72
9 Focus 30 0.31 0.04 1.13
9 explore 50 0.31 0.05 1.37
9 explore 45 0.31 0.04 1.20
10 explore 55 0.31 0.07 1.54
10 exploit 25 0.31 0.19 0.57
10 explore 40 0.31 0.05 1.04
10 Focus 20 0.32 0.02 0.61
10 explore 60 0.32 0.10 1.72
10 explore 25 0.33 0.13 0.58
10 explore 35 0.33 0.08 0.89
10 phi3-mini(3.8B) 30 0.33 0.10 2764.00
10 explore 20 0.35 0.12 0.43
11 phi3-mini(3.8B) 20 0.36 0.01 1860.56
11 rrp 10 0.38 0.11 0.15
11 explore 30 0.38 0.10 0.73
11 llama3-8b(8.0B) 20 0.42 0.09 9504.92
12 baseline 398 0.55 0.16 0.00
12 llama3-8b(8.0B) 30 0.58 0.16 13920.05

20 such repeats. This stark contrast highlights the computa-
tional efficiency of acquisition functions compared to language
models.

Additionally, as depicted in 4 , language models operating
in a few-shot setting require significantly more time than in a
zero-shot setting. This suggests that LLMs engage in a more
meticulous and thorough search for similar rows within the
dataset when provided with a few examples. The extended
processing time reflects their effort to leverage the examples
effectively, ensuring they capture the nuances of the task,
which contrasts with the more generalized approach in zero-
shot scenarios.

RQ3: Does Few shot learning perform better than zero shot
learning in the context of active learning?

Large language models (LLMs) are designed to deliver im-
pressive results across a wide range of tasks without requiring
ground knowledge or examples. This is largely due to the vast
and diverse training corpora they are built upon, enabling
them to generalize well to various unseen tasks. However,
when the task involves datasets that were not part of the

Figure 4: Run time of all the treatments for budgets 20
& 30

Figure 4.a: few shot

Figure 4.b: zero shot

model’s training data, as in our experiments, few-shot learn-
ing tends to outperform zero-shot learning.

The underlying reason for this could be that few-shot learn-
ing provides the model with relevant context and examples,
which help it adapt more effectively to the specific nuances
of the new dataset. This contextual adaptation seems crucial
when dealing with data that differ significantly from what
the model has been exposed to during training. The results
indicate that even a minimal amount of task-specific data
can significantly enhance performance compared to zero-shot
scenarios, where the model relies entirely on its pre-existing
knowledge base.

5 Conclusion
The ranking studies of prior work on active learning using
large language models (LLMs) have demonstrated that there
has been comparatively little research focused on tabular
datasets. This gap in the literature is significant, especially
when considering the potential of LLMs in handling diverse
data modalities.

Our experiments involved a thorough evaluation of two
LLMs, phi3-mini (3.8B) and Llama3 (8B), across various treat-
ments for the datasets outlined in Section 2. The performance
of these models was benchmarked against traditional Bayesian
optimization techniques. The results, as detailed in Section
??, reveal that Bayesian optimization methods significantly
outperform LLMs in both performance metrics and computa-
tional efficiency. This suggests that, for tabular datasets, the
sophisticated statistical underpinnings of Bayesian methods
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Table 5: Few-shot learning Results

Statistical ranks
Frequency 0 1 2 3 4 5 6 7 8 9 10

llama3-8b(8.0B) 17 17 17 17 33
phi3-mini(3.8B) 17 33 17 17 17

rrp 17 17 17 50
exploit 83 17
random 17 50 17 17
baseline 33 50 17
Focus 67 17 17
explore 17 17 67

Evaluations
llama3-8b(8.0B) 20 (0) 30 (0) 20 (0) 20 (0) 0 (0) 20 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
phi3-mini(3.8B) 30 (0) 0 (0) 25 (0) 30 (0) 30 (0) 0 (0) 0 (0) 20 (0) 0 (0) 0 (0) 0 (0)

rrp 17 (0) 0 (0) 0 (0) 9 (0) 0 (0) 11 (0) 0 (0) 10 (0) 0 (0) 0 (0) 0 (0)
exploit 36 (0) 25 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
random 20 (0) 0 (0) 50 (0) 30 (0) 55 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
baseline 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 43605 (0) 0 (0) 646 (0) 0 (0) 206 (0)
Focus 41 (0) 40 (0) 0 (0) 0 (0) 0 (0) 0 (0) 45 (0) 0 (0) 0 (0) 0 (0) 0 (0)
explore 0 (0) 0 (0) 0 (0) 40 (0) 60 (0) 38 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Deltas
llama3-8b(8.0B) 49 (0) 34 (0) 86 (0) 89 (0) 0 (0) 63 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
phi3-mini(3.8B) 47 (0) 0 (0) 67 (0) 56 (0) 80 (0) 0 (0) 0 (0) 66 (0) 0 (0) 0 (0) 0 (0)

rrp 51 (0) 0 (0) 0 (0) 89 (0) 0 (0) 71 (0) 0 (0) 34 (0) 0 (0) 0 (0) 0 (0)
exploit 83 (0) 34 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
random 42 (0) 0 (0) 78 (0) 30 (0) 89 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
baseline 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Focus 65 (0) 100 (0) 0 (0) 0 (0) 0 (0) 0 (0) 65 (0) 0 (0) 0 (0) 0 (0) 0 (0)
explore 0 (0) 0 (0) 0 (0) 30 (0) 9 (0) 58 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Table 6: Zero-shot Learning Results

Statistical Ranks
Frequency 0 1 2 3 4 5 6 7 8 9 10 11 12

llama3-8b(8.0B) 17 17 17 17 17 17
phi3-mini(3.8B) 33 33 17 17

rrp 17 17 17 17 17 17
exploit 100
random 50 17 17 17
baseline 17 33 17 17 17
Focus 33 33 17 17
explore 17 17 17 33 17

Evaluations
llama3-8b(8.0B) 0 (0) 30 (0) 20 (0) 30 (0) 0 (0) 0 (0) 0 (0) 30 (0) 20 (0) 0 (0) 0 (0) 20 (0) 0 (0)
phi3-mini(3.8B) 0 (0) 30 (0) 30 (0) 0 (0) 0 (0) 0 (0) 0 (0) 30 (0) 0 (0) 0 (0) 30 (0) 0 (0) 0 (0)

rrp 0 (0) 17 (0) 0 (0) 11 (0) 0 (0) 9 (0) 0 (0) 11 (0) 9 (0) 0 (0) 0 (0) 10 (0) 0 (0)
exploit 40 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
random 0 (0) 40 (0) 45 (0) 0 (0) 50 (0) 40 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
baseline 0 (0) 0 (0) 86058 (0) 0 (0) 0 (0) 0 (0) 770 (0) 0 (0) 0 (0) 206 (0) 1152 (0) 0 (0) 398 (0)
Focus 33 (0) 53 (0) 45 (0) 0 (0) 0 (0) 20 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
explore 35 (0) 35 (0) 20 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 28 (0) 45 (0) 0 (0) 0 (0) 0 (0)

Deltas
llama3-8b(8.0B) 0 (0) 49 (0) 30 (0) 75 (0) 0 (0) 0 (0) 0 (0) 86 (0) 66 (0) 0 (0) 0 (0) 24 (0) 0 (0)
phi3-mini(3.8B) 0 (0) 63 (0) 67 (0) 0 (0) 0 (0) 0 (0) 0 (0) 75 (0) 0 (0) 0 (0) 40 (0) 0 (0) 0 (0)

rrp 0 (0) 47 (0) 0 (0) 75 (0) 0 (0) 15 (0) 0 (0) 86 (0) 61 (0) 0 (0) 0 (0) 31 (0) 0 (0)
exploit 74 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
random 0 (0) 54 (0) 100 (0) 0 (0) 89 (0) 56 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
baseline 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Focus 77 (0) 85 (0) 34 (0) 0 (0) 0 (0) 55 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
explore 34 (0) 85 (0) 5 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 51 (0) 44 (0) 0 (0) 0 (0) 0 (0)

provide a clear advantage over the more generalized, yet less
specialized, capabilities of LLMs. Our analysis highlights that
the Exploit strategy consistently outperforms not only all LLM
treatments but also other acquisition functions within the
Bayesian optimization framework. This finding underscores

the robustness and reliability of the Exploit strategy in active
learning scenarios, particularly for tabular data.

In conclusion, while LLMs show promise in many areas
of machine learning, their current performance on tabular
datasets, especially in the context of active learning, falls short
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when compared to Bayesian optimization methods. These find-
ings suggest that, at least for the foreseeable future, Bayesian
methods remain the preferred choice for optimizing perfor-
mance and efficiency in tabular data-driven tasks.

6 Limitations and Future Work
Despite these insights, there remains an open question about
the potential of larger and more advanced LLMs. It is unclear
whether such models, possibly with greater parameter counts
or enhanced fine-tuning, could close the gap with Bayesian
methods or even surpass them. Future research should explore
this avenue, testing the limits of LLM capabilities in compari-
son to traditional optimization techniques.

In this work we have limited the initialization of data points
to be random. However prior work have indicated that guided
initialization methods might perform better that random ini-
tialization which is a potential area of research. Additionally,
exploring hybrid approaches that combine the strengths of
LLMs and Bayesian methods could provide a fruitful direction
for further investigation.
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